Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Микропроцессорная система дуговой защиты КРУ



 напряжением 6-10 кВ.

 

Значительное число шкафов комплектных распределительных устройств (КРУ), находящихся в эксплуатации, не имеет полноценной быстродействующей защиты, способной совместно с коммутационными аппаратами локализовать наиболее тяжелые аварии в них, вызванные внутренними КЗ, сопровождаемыми открытой электрической дугой. Горение дуги внутри шкафов КРУ более 0, 15-0, 2с приводит к тяжелым последствиям и зачастую сопровождается выгоранием двух-трех соседних шкафов, а в некоторых случаях и целых секций.Существующие защиты на основе разгрузочных клапанов и фототиристоров не отвечают современным требованиям ни по надежности, ни по чувствительности и сервисным функциям. Заботясь о повышении надежности энергоснабжения потребителей и устойчивости функционирования энергосистем, РАО ”ЕЭС России” издало приказ № 120 от 01.07.98 ”О мерах по повышению взрывопожаробезопасности энергетических объектов ” (п. 1.12.5), предписывающий оснащать шкафы КРУ полноценной дуговой защитой.

Многолетний опыт разработки и внедрения дуговых защит КРУ позволил создать микропроцессорную дуговую защиту, описываемую в статье. Принцип ее действия основан на контроле уровня светового потока (освещенности) и тока. Контроль светового потока освещенности внутри отсеков КРУ из-за их замкнутого пространства дает возможность обеспечить практически абсолютную селективность. Особенность защиты заключается в наличии электрических каналов связи, позволяющих в отличие от оптико-волоконных датчиков и линий связи обеспечивать высокую технологичность ремонта и восстановления защиты после аварии.

Микропроцессорная система дуговой защиты состоит из следующих функциональных блоков: центрального управляющего устройства (ЦУУ);

локальных модулей сбора информации (ЛМСИ); системной шины данных (СШД); оптико-электрических датчиков (ОЭД).

Оптико - электрический датчик входит в состав ЛМСИ, а для расширения зоны действия(увеличения числа контролируемых отсеков) к локальному модулю могут подключаться дополнительные ОЭД.

Локальный модуль сбора информации представляет собой микропроцессорное устройство, устанавливаемое в одном из отсеков шкафа КРУ, например в отсеке высоковольтного оборудования или отсеке релейной защиты. В последнем случае дополнительные ОЭД устанавливаются в защищаемых отсеках. Элементы ЛМСИ (далее локальный модуль); мультиплексор (М); блок задания конфигурации (БЗК); блок обработки информации (БОИ); выходные органы (ВО); шина данных (ШД); приемо-передатчик (ПП).

Питание ЛМСИ с напряжением ± En осуществляется от блока питания ЦУУ, а выходной орган выполнен на основе электромагнитного реле KL.

Приемо-передатчик (ПП) подключается к СШД, которая физически реализована с помощью стандартного промышленного протокола передачи данных – RS-485. Переключатели в блоке задания конфигурации устанавливают номер от 0 до 31, соответствующий конкретному ЛМСИ.

К системной шине данных можно подключить до 32 ЛМСИ, что вполне достаточно для защиты секции, состоящей в большинстве случаев из меньшего числа ячеек. Помехоустойчивость канала передачи данных обеспечена с помощью программных и аппаратных способов.

Центральное управляющее устройство, структурная схема которого представлена на чертеже, через ПП подключено к СШД и обеспечивает последовательный опрос ЛМСИ. На данном рисунке, кроме указанных, приняты обозначения: БВП - блок выходных преобразователей, БП –блок питания с преобразованием постоянного напряжения 220 В в постоянное напряжение меньшего уровня ± Еn, БВ/ В –блок ввода/ вывода. В случае возникновения дугового КЗ в защищаемой зоне, приводящего к повышению уровня освещенности в поврежденной ячейке и пуску, например по току, обеспечивается формирование выходного сигнала (согласно выбранной в БКЗ параметров системы). В нормальном режиме защищаемой электроустановки система защиты осуществляет самодиагностику. При выходе из строя одного или нескольких ЛМСИ, всей или части СШД формируется сигнал о неисправности (срабатывает выходной орган) и заполняется журнал ошибок, в котором содержится информация о неисправном элементе. Центральное управляющее устройство имеет широкий набор функций, позволяющих, например, проводить диагностирование ЛМСИ и СШД, логически исключить один или несколько ЛМСИ из списка опрашиваемых, при выводе содержащих их ячеек в ремонт.

 

Основные технические характеристики защиты

 

Порог срабатывания по освещенности, Лк……..………………100 ÷ 200

Время срабатывания (при 16 и 32 ЛМСИ), мс………….Не более 16 / 32

Максимальное число ЛМСИ в системе, шт ……………………………32

Максимальное число ОЭД подключаемых к ЛМСИ, шт …………….…6

Напряжение питания постоянного тока, В …………………………....220

                                                                                         (-20% ± 10%)

Потребляемая мощность ЦУУ, Вт ………………………………….5 ÷ 9

Потребляемая мощность ЛМСИ, Вт ………...…….…………… 0, 2 ÷ 0, 3

Вид выходного сигнала ЦУУ …………………..………”Сухой контакт”,

4 раздельных выхода

Вид выходного сигнала ЛМСИ ……………”Сухой контакт”

Температура окружающего воздуха, °С ……….……От – 25 до + 45

Масса, кг:

ЦУУ ……………………......……………………………Не более 1, 5

ЛМСИ …………….……………………………….. Не более 0, 2

 

Примечание.

1.Наличие тестового и функционального контроля.

2.Возможность ручного и автоматического конфигурирования системы защиты.

На этом же чертеже приведена структурная схема дуговой защиты секции с использованием описанной системы. Секция КРУ при этом делится на несколько зон, в которых при КЗ алгоритм функционирования и воздействия на коммутационные аппараты однотипен: отсеки ТТ и кабельной разделки; выключателей; секционного выключателя (СВ); вводного выключателя (ВВ); шинный отсек.

При КЗ в зоне 1 отключение выключателя поврежденной ячейки может быть эффективным, а электроприемники, подключенные к другим линиям, остаются в работе (сигнал ”Сраб n+1”). При КЗ в зоне 2 отключение собственного выключателя может усугубить аварию и в этом случае предпочтительней воздействие на ВВ и СВ, что безусловно приводит к отключению значительного числа потребителей (сигналы ”Сраб n+1” и ”Сраб n+2”).

При КЗ в зоне 3 альтернативы отключению ВВ и СВ не существует и поэтому формируются сигналы ”Сраб n+1” и ”Сраб n+2”.

При КЗ в зоне 4, т.е. в отсеках СВ, требуется отключение двух вводных выключателей (сигнал ”Сраб n+1”).

К полному погашению одной из секций КРУ приводит КЗ в отсеках ВВ(зона 5), так как в этом случае предусмотрено отключение коммутационного аппарата стороны высшего напряжения и СВ(сигналы ”Сраб n +3” ”Сраб  n+2 ”).

Алгоритмы функционирования описанной системы дуговой защиты могут изменяться, что определяется как требованиями, предъявляемыми к ней на стадии проектирования, так и в процессе ее эксплуатации.

В системе предусмотрена функция резервирования отказов низших ступений, то есть при КЗ в зоне 1 и отказе выключателя Qn через время, равное ступени селективности, срабатывает реле отключения, воздействующее на выключатели Qn+1 и Qn+2.

Алгоритмы формирования внешних воздействий на коммутационные аппараты при повреждениях в различных отсеках КРУ разработаны авторами на основе практического выполнения дуговой защиты на базе клапанов давления, фототиристоров, ”логической” защиты шин, защит аналогичного принципа действия, с учетом мнения специалистов энергосистем и проектных организаций, а также собственного опыта разработки и внедрения рассматриваемых защит.

Проведенные испытания системы защиты РДЗ-018, в том числе и натурные испытания с токами короткого замыкания от 3 до 5 кА в ячейках КРУ напряжением 6 кВ, подтвердили ее работоспособность и эффективность, а также позволили внести ряд изменений, улучшающих электромагнитную совместимость и сервисные функции. 


Заключение

Целью данного дипломного явилось разработка системы электроснабжения района города. В настоящем проекте освещены следующие вопросы: 1) определение расчетных нагрузок элеватора и района электроснабжения в целом; 2) определение центра электрических нагрузок на основе картограммы нагрузок; 3) выбор числа и мощности трансформаторов потребителей; 4) выбор числа и мощности трансформаторов ГПП; 5) расчет токов короткого замыкания; 6) на основе рассчитанных токов короткого замыкания выбор оборудования, кабелей; 7) расчет продольной дифференциальной защиты, МТЗ, защита от перегрузки, газовая защита трансформатора; 8) технико-экономический расчет; 9) рассмотрен вопрос охраны труда, который включил в себя вопросы пожаробезопасности на зерноперерабатывающем предприятии и расчет потребного количества огнетушащих средств для тушения пожаров.

В специальном вопросе рассмотрены микропроцессорная система дуговой защиты КРУ напряжением 6-10 кВ.


Литература

1. Порошенко А.Г. Проектирование электроснабжения с применением ПЭВМ. Учебное пособие / Алт. гос. техн. ун-т им. И.И. Ползунова. – Барнаул: Изд-во Алт. гос. техн. ун-та, 1994. – 162 с.

2. Справочник по оборудованию элеваторов и складов. – Изд.2-е, перераб. и доп. – М.: Колос, 1978. – 240 с.: ил.

3. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов: Уч. пособие для студентов электроэнергет. спец. вузов, 2-е изд., перераб. и доп../В.М.Блок, Г.К. Обушев и др.; Под ред. В.М. Блок. – М.: Высш.шк., 1990. – 383с.: ил.

4. Федоров А.А., Стракова Л.Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий: Учеб. пособие для вузов. – М.: Энергоатомиздат, 1987. – 368 с.: ил.

5. Справочник по электроснабжению промышленных предприятий. Промышленные электрические сети. 2-е изд., перераб. и доп. /Под общ. ред. АА.Федорова и Г.В. Сербинского. – М.: Энергия, 1980. – 576 с.

6. Основы техники релейной защиты / М.А. Беркович, В.В. Молчанов, В.А. Семенов. – 6-е изд., перераб и доп. – М.: Энергоатомиздат, 1984. – 376 с.

7. Родина Г.Е. Экономические и организационные вопросы разработки варианта электроснабжения объекта: Методические указания к выполнению дипломных работ констр.-технологического характера для студентов специальности 1004 всех форм обучения/Алт. политехн. ин-т им. И.И. Ползунова. – Барнаул: Б.И., 1990. – 35 с.

8. Теплов А.Ф. Галкина А.В. Охрана труда на хлебоприемных предприятиях. – М.: Колос, 1984. – 207 с., ил


Приложение Б

 

Определение условного центра электрических нагрузок.

Район города

Число приемников N=11

Количество интервалов времени графика нагрузки M=24

Таблица Б.1 – Исходные данные

Номер и название электроприемника

Координаты приемника

Интервал времени графика нагрузки

Мощность установленная, кВт

X Y
1 2 3 4 5
1 ТП-2 Молмаш 306, 0 788, 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 900 900 1600 1340 1700 1480 1300 1300 1860 2060 2338 2200 2140 2100 2200 2200 2000 1960 1960 1400 1360 1400 2000 1100

 


Продолжение таблицы Б.1

1 2 3 4 5
2 2-й цех элеватор 1034 914 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 50 50 50 50 50 100 300 450 566 480 470 500 250 450 450 300 200 200 200 50 50 50 50 50

Продолжение таблицы Б.1

1 2 3 4 5
3 МСК 1274 940 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 500 520 500 500 480 580 500 600 850 1188 1150 1130 1150 1100 1080 1050 950 950 900 870 850 650 500 500

 

 

Продолжение таблицы Б.1

1 2 3 4 5
4 РП-8 1350 930 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1800 1500 1750 1750 1750 1900 2600 4500 5200 5000 3500 3500 4000 3000 2750 2750 1750 4500 4750 4750 4500 3500 3250 2250
5 АРЗ 1300 580 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 400 400 400 400 400 400 600 1200 1300 1600 1500 1737 1700 1100 1500 1600 1600 1400 1100 1300 1300 1100 1000 700
6 Молмаш ТП-1 1080 600 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 150 150 150 150 150 150 150 500 688 650 650 500 250 400 550 500 420 150 150 150 150 150 150 150

Продолжение таблицы Б.1

1 2 3 4 5
7 ФСК 1090 160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 500 500 400 400 400 400 400 500 800 1400 1713 1500 1200 1100 1500 1400 1400 800 1200 1100 900 500 500 500
8 БиКЗ 650 480 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1250 1100 1000 1000 1000 1100 1250 3250 5250 6055 5800 5550 4250 5000 5250 5000 4750 5000 4950 4000 3750 3750 1250 1250
9 3-й цех элеватор 466 358 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 600 600 600 600 600 600 600 700 1600 1611 1600 1560 1500 800 1600 1611 1611 1600 1000 900 600 600 600 600

 

10 МЭЗ 420 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 200 200 200 200 200 600 1600 2436 2300 2200 2300 1500 2000 2000 2000 1940 800 800 800 300 200 200 200 200
11 ТП-6 124 340 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1200 1200 800 800 700 700 1800 1760 2900 2810 2600 2700 2400 2800 2200 1400 1400 3200 3300 3300 2800 2000 1200 1200

 


Таблица Б.2 – Координаты центра нагрузок на каждом интервале времени

Интервал времени

Координаты центра

SX SY
1 787, 5 600, 8
2 768, 1 590, 4
3 774, 7 640, 1
4 791, 7 634, 8
5 775, 8 645, 3
6 788, 0 620, 8
7 738, 1 557, 8
8 798, 4 560, 2
9 773, 9 563, 1
10 784, 7 556, 5
11 750, 4 530, 4
12 764, 4 549, 5
13 786, 5 561, 4
14 716, 9 532, 2
15 743, 5 527, 3
16 768, 0 535, 3
17 758, 4 537, 1
18 771, 3 587, 6
19 774, 6 583, 1
20 811, 8 599, 3
21 826, 7 611, 7
22 807, 1 613, 6
23 843, 0 663, 5
24 824, 1 621, 9

 

Математическое ожидание ЦЭН: QX=780, 32; QY=584, 32

Среднеквадратичное отклонение ЦЭН: GX= 28, 60; GY= 39, 94

Коэффициент корреляции координат ЦЭН: К-0, 7

Полуоси эллипса рассеяния ЦЭН: RX=102, 6251; RY= 62, 8189

Угол поворота осей эллипса относительно выбранной системы координат: AR=0, 56 радиан; AG=32, 03 градусов

 


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 203; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.032 с.)
Главная | Случайная страница | Обратная связь