Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Основные типы и классификация электрических машин.
Электрические машины - это электромеханические преобразователи, в которых осуществляется преобразование электрической энергии в механическую или механической в электрическую. Основное отличие электрических машин от других преобразователей в том, что они обратимы, т. е. одна и та же машина может работать в режиме двигателя, преобразуя электрическую энергию в механическую, и в режиме генератора, преобразуя механическую энергию в электрическую. По виду создаваемого в машинах поля, в котором происходит преобразование энергии, электрические машины подразделяются на индуктивные, емкостные и индуктивно-емкостные. Современные широко применяемые в промышленности и других отраслях народного хозяйства электрические машины - индуктивные. Преобразование энергии в них осуществляется в магнитном поле. Емкостные электрические машины, хотя и были изобретены задолго до индуктивных, до сих пор не нашли практического применения из - за сложности создания достаточно мощного электрического поля, в котором происходит преобразование энергии. Индуктивно-емкостные машины появились лишь в последние годы. Преобразование энергии в них происходит в электромагнитном поле, и они объединяют свойства индуктивных и емкостных электрических машин. В практике эти машины еще не применяются, поэтому в данной работе рассматриваются только индуктивные электрические машины, которые в дальнейшем будут называться просто электрическими машинами. Для того чтобы электрическая машина работала, в ней должно быть создано вращающееся магнитное поле. Принцип образования вращающегося поля у всех машин один и тот же. Вращающееся магнитное поле широко применяется в асинхронных двигателях. Чтобы получить вращающееся магнитное поле, необходимо три обмотки, сдвинутые по окружности на 120°, питать трехфазным током. Комбинация трех таких обмоток с проходящим по ним током образует одну пару магнитных полюсов (N-S). На рис.1.1. показан принцип получения, вращающегося магнитного поля. На рисунке начала обмоток обозначены буквами А, B, а концы - X, Y, Z. За положительное направление тока принимаем направление от начала к. концу обмотки. В нулевой момент времени ток первой фазы равен нулю, ток во второй фазе отрицательный, а в третьей фазе - положительный. Результирующий магнитный поток для этого момента показан на рис.1.1, б.
Рис 1.1 Получение вращающегося магнитного поля: а- развернутая диаграмма трехфазного тока; б- направление магнитного потока в момент t=0; в- направление магнитного потока в момент t=30 ; г- направление магнитного потока в момент t=60 . Точно таким же образом определяется положение результирующего магнитного потока для остальных рассматриваемых моментов. Сравнивая положение магнитного потока в различные моменты времени, видим, что магнитный поток вращается и за один период изменения тока делает один оборот. Если результирующее магнитное поле имеет две пары полюсов, то частота вращения магнитного потока уменьшится в два раза. Таким образом, частота вращения магнитного потока прямо пропорциональна частоте питающего тока и обратно пропорциональна числу пар полюсов: где ƒ - частота тока; р - число пар полюсов Непременным условием преобразования энергии является изменение потокосцепления обмоток в зависимости от взаимного положения ее частей -статора и ротора. Это условие может быть выполнено при различных вариантах конструктивных форм магнитопровода и при различных конструкциях и расположении обмоток (рис.1.2, а - г). Тот или иной вариант выбирается в зависимости от рода питающего (или генерируемого) тока, наиболее удобного способа создания поля и типа машины. Для преобразования энергии в подавляющем большинстве электрических машин используется вращательное движение. Электрические машины обычно выполняются с одной вращающейся частью - цилиндрическим ротором и неподвижной частью - статором. Такие машины называются одномерными. Они имеют одну степень свободы. Почти все выпускаемые промышленностью машины - одномерные с цилиндрическим вращающимся ротором и внешним неподвижным статором. Электромагнитный момент в электрических машинах приложен и к ротору, и к статору. Если дать возможность вращаться обеим частям машины, они будут перемещаться в противоположные стороны. У машин, в которых вращаются и ротор, и статор, две степени свободы. Это двухмерные машины. В навигационных приборах ротором может быть шар, который вращается относительно двух статоров, расположенных под углом 90°. Такие машины имеют три степени свободы. В космической электромеханике встречаются шестимерные электромеханические системы, в которых и ротор, и статор имеют по три степени свободы. Рис. 1.2. Основные конструктивные исполнения электрических машин: а - асинхронная; б - синхронная; в - коллекторная; г– индукторная. Находят применение также электрические машины, в которых ротор (или и ротор, и статор) имеет форму диска. Такие машины называют торцевыми. Электрические машины помимо вращательного могут иметь и возвратно-поступательное движение (линейные машины). В таких машинах статор и ротор разомкнуты и магнитное поле отражается от краев, что приводит к искажению поля в воздушном зазоре. В асинхронных машинах специальная обмотка возбуждения отсутствует, рабочий поток создается реактивной составляющей тока обмотки статора. Этим объясняется простота конструкции и обслуживания асинхронных двигателей, так как отсутствуют скользящие контакты для подвода тока к вращающейся обмотке возбуждения и отпадает необходимость в дополнительном источнике постоянного тока для возбуждения машины. Обмотки статоров и роторов асинхронных машин распределенные и размещены в пазах их магнитопроводов. На роторах асинхронных машин располагается либо фазная, т. е. имеющая обычно столько же фаз, сколько и обмотка статора, изолированная от корпуса обмотка, либо короткозамкнутая. Короткозамкнутая обмотка ротора состоит из расположенных в пазах ротора замкнутых между собой по обоим торцам ротора неизолированных стержней из проводникового материала. Она может быть также выполнена заливкой пазов алюминием. В зависимости от типа обмотки ротора различают асинхронные двигатели с фазными роторами или асинхронные двигатели с короткозамкнутыми роторами. Нормальное исполнение асинхронных машин с ротором, расположенным внутри статора. Однако для некоторых приводов, например привода транспортера, оказывается выгоднее расположить вращающийся ротор снаружи статора. Такие машины называют обращенными или машинами с внешним ротором. Они выполняются обычно с короткозамкнутыми роторами. Среди коллекторных машин переменного тока получили распространение в основном однофазные двигатели малой мощности. Они находят применение в приводах, к которым подвод трехфазного или постоянного тока затруднен или нецелесообразен (в электрифицированном инструменте, бытовой технике и т. п.). В машинах средней и тем более большой мощности коллекторные машины переменного тока в настоящее время не применяются. Исключение составляют отдельные специальные машины, например машины типа двигателя Шраге – Рихтера. Большинство машин постоянного тока - это коллекторные машины. Они выпускаются мощностью от долей ватта до нескольких тысяч киловатт. Обмотки возбуждения машин постоянного тока располагаются на главных полюсах, закрепленных на станине. Выводы секций обмотки ротора (якоря) впаяны в пластины коллектора. Коллектор, вращающийся на одном валу с якорем, и неподвижный щеточный аппарат служат для преобразования постоянного тока сети в переменный ток якоря (в двигателях) или переменного многофазного тока якоря в постоянный ток сети (в генераторах постоянного тока). Конструкция машин постоянного тока более сложная, стоимость выше и эксплуатация более дорогая, чем асинхронных, поэтому двигатели постоянного тока применяются в приводах, требующих широкого и плавного регулирования частоты вращения, или в автономных установках при питании двигателей от аккумуляторных батарей. Подавляющее число машин постоянного тока выполняется с коллектором - механическим преобразователем частоты. Но существует несколько типов и бесколлекторных машин, например униполярные генераторы (рис.3), которые используются для получения больших токов (до 100 кА) при низких напряжениях. В таких машинах коллектор отсутствует, но они могут работать только при наличии скользящего контакта, который состоит из щеток 1 и колец 2. Постоянный магнитный поток, созданный токами обмотки возбуждения 5, замыкается по станине 3, массивному ротору 4 и двум зазорам. Постоянные токи наводятся в массивном роторе и снимаются щетками. Чтобы уменьшить электрические потери в роторе, в нем делают пазы, в которые укладывают медные стержни 6. Стержни, приваренные к контактным кольцам, образуют на роторе короткозамкнутую обмотку. Рис. 1.3. Униполярная электрическая машина. В последние годы получили распространение также бесколлекторные машины постоянного тока с вентильным управлением, в которых механический преобразователь частоты заменен преобразователем частоты на полупроводниковых элементах. Несмотря на большое число различных типов электрических машин и независимо от их конструктивного исполнения, рода и числа фаз питающего тока и способов создания магнитных полей преобразование энергии в машинах происходит только при следующем условии: во всех электрических машинах в установившихся режимах поля статора и ротора неподвижны относительно друг друга. Поле ротора, которое создается токами, протекающими в обмотке ротора, вращается относительно ротора. При этом механическая частота вращения ротора и частота вращения поля относительно ротора в сумме равны частоте вращения поля статора, поэтому частоты токов в статоре и роторе жестко связаны соотношением f 2 = f 1 s, (1) где f 1, f 2 - частоты тока и напряжения статора и ротора; s - относительная частота вращения ротора или скольжение, определяемое частотой вращения поля статора n 1 и частотой вращения ротора машины n 2: s = (nl ± n 2) / n 1 (2) В синхронных машинах обмотка возбуждения ротора питается постоянным током (f 2 = 0), и, следовательно, из (1) s = 0, откуда по (2) n = n 1 т. е. ротор синхронной машины вращается синхронно с полем, созданным токами обмотки статора. Жесткая связь частоты тока и частоты вращения определила область применения синхронных машин. Синхронные генераторы являются практически единственными мощными генераторами электрической энергии на электростанциях. Синхронные двигатели с учетом трудностей их пуска применяются как приводы промышленных установок, длительно работающих при постоянной частоте вращения и не требующих частых пусков, например как приводные двигатели воздуходувок, компрессоров и т. п. В асинхронных машинах ток в обмотке ротора обусловлен ЭДС, наведенной в проводниках обмотки магнитным полем статора. Наведение ЭДС происходит только при пересечении проводниками магнитных силовых линий поля, что возможно лишь при неравенстве частот вращения ротора и поля статора (n 2 ≠ n 1). Частота тока в роторе равна f 2 = f 1 s, что обеспечивает взаимную неподвижность поля токов ротора и поля статора, а частота вращения ротора при этом равна n 2 = n 1(1 - s). При скольжении s = l ротор неподвижен (f 2 = f 1), преобразования механической энергии не происходит и имеет место трансформаторный режим работы машины. При питании обмотки ротора постоянным током машина переходит в синхронный режим работы. При питании ротора переменным током асинхронный двигатель может вращаться с частотой большей, чем частота поля статора. Такие режимы используются редко из-за сложности пуска машины: необходим разгонный двигатель либо преобразователь частоты. Примером двигателя этого типа являются двигатели Шраге - Рихтера, в которых для преобразования частоты тока ротора используется коллектор, соединенный с добавочной обмоткой ротора. Регулирование частоты вращения двигателя производится изменением добавочной ЭДС, вводимой в обмотку ротора, путем изменения положения щеток на коллекторе. В машинах постоянного тока поле возбуждения создается постоянным током, а поле якоря - переменным. Преобразование постоянного тока сети в многофазный переменный ток якоря происходит с помощью механического преобразователя - коллектора. Частота переменного тока якоря определяется частотой его вращения, и магнитное поле, создаваемое током якоря, неподвижно относительно поля возбуждения машины. Бесколлекторные (вентильные) машины постоянного тока, как правило, обращенные, т. е. их обмотки возбуждения, питаемые постоянным током, расположены на вращающемся роторе, а якорные обмотки на неподвижном статоре. Частота питания якорных обмоток задается статическим преобразователем частоты. Условие взаимной неподвижности полей статора и ротора приводит к возможности регулирования частоты вращения вала двигателя, изменением частоты питания его якорных обмоток. С этой точки зрения вентильные машины постоянного тока могут рассматриваться как синхронные, обмотки переменного тока которых питаются от преобразователя частоты. В однофазных коллекторных машинах обмотки возбуждения питаются переменным током и создают пульсирующее поле. Коллектор преобразует однофазный ток питания в многофазный переменный ток с частотой, зависящей от частоты вращения ротора, при которой магнитные поля статора и ротора неподвижны относительно друг друга. Из-за затрудненной коммутации коллекторные машины переменного тока выполняются лишь небольшой мощности. |
Последнее изменение этой страницы: 2019-06-08; Просмотров: 210; Нарушение авторского права страницы