Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Состав установки и ее особенности
ВШНУ (рис. 4.130) включат в свой состав наземное и скважинное оборудование. Наземное оборудование ВШНУ устанавливается на трубной головке скважины и предназначено для преобразования энергии приводного двигателя в механическую энергию вращающейся колонны штанг. Наземное оборудование состоит из: - тройника для отвода пластовой жидкости; - приводной головки; - рамы для крепления приводного двигателя; - трансмиссии; - приводного двигателя с устройством управления; - устройства для зажима (подвески) полированного штока. Приводная головка предназначена для передачи крутящего момента колонне штанг, восприятия осевых нагрузок от веса штанг и гидравлической силы в рабочих органах насоса, уплотнения устья скважины. Конструктивно приводная головка выполнена на базе корпуса, устанавливаемого на тройник-отвод посредством фланцевого или резьбового соединения. Внутри корпуса, заполненного маслом, на подшипниках качения располагается приводной вал, связанный с ведомым шкивом силовой передачи. В качестве упорного подшипника, воспринимающего осевую нагрузку, используются конический или сферический роликовые подшипники. Для уплотнения вращающегося приводного вала или полированного штока слу- 5КНТ одинарное или сдвоенное сальниковое устройство с использованием уплотнительных колец или мягкой набивки. Для предотвращения обратного вращения колонны штанг после остановки приводного двигателя приводная головка оснащается тормозным устройством механического или гидравлического типа. Это устройство необходимо для восприятия момента кручения от колонны насосных штанг и не допускает отворота резьб штанг и обратного вращения, как самой колонны штанг, так и элементов приводной головки и трансмиссии. В отдельных компоновках ВШНУ для удобства обслуживания установки под приводной головкой устанавливается дополнительный сальник или плашечный превентор. Первый служит для замены основного сальника без остановки насоса, что особенно актуально в зимних условиях эксплуатации ВШНУ, второй — для герметизации устья скважины при ремонте поверхностного оборудования. В ряде моделей ВШНУ зарубежных фирм приводная головка снабжается ограничителем крутящего момента. Рама под приводной двигатель при использовании клиноременной силовой передачи оснащается устройством натяжения ремней. Зажим полированного штока, как правило, осуществляется двумя полухомутами, внутренняя цилиндрическая поверхность которые закрепляется со штоком с помощью четырех или шести болтов, а наружная профилированная поверхность (например, прямоугольная i вставляется в ступицу приводного вала. Скважинное оборудование ВШНУ состоит из колонны НКТ, н нижней части которой устанавливается статор насоса и вращающейся в центраторах колонны штанг, нижний конец которой соединен с ротором насоса. Компоновка низа колонны НКТ в зависимости от условий эксплуатации скважины может включать следующие элементы: фильтр; газовый и песочный сепараторы; динамический якорь (анкер); центратор или фонарь статора; обратный и циркуляционный клапаны: Упорный палец насоса. Динамический якорь, устанавливаемый ниже статора, фиксируй НКТ относительно эксплуатационной колонны в радиальном направлении, допуская при этом их вертикальное перемещение. Включение в скважинное оборудование ВШНУ якоря обусловлено тем, что при правом (по часовой стрелке) вращении штанговой колонны реактивный момент, возникающий на корпусе статора насоса, работает на отворот резьб статора и НКТ. Якорь выполняется на базе фрикционного механизма, приводящего в действие плашки при возникновении крутящего момента. Якорь целесообразно использовать при больших крутящих моментах, обусловленных диаметром винта или давлением насоса. При отсутствии якоря при монтаже ВШНУ необходимо обеспечить требуемые моменты крепления резьбовых соединений НКТ. Упорный палец в насосе служит для правильной подгонки длины колонны штанг при монтаже винтового насоса. Штанговые невращающиеся центраторы, выполняющие функцию промежуточных радиальных опор, могут быть представлены в двух конструктивных исполнениях: неразборные, размещенные непосредственно на полноразмерной или укороченной штанге по специальной технологии в заводских условиях; разборные, устанавливаемые между муфтами стандартных штанг. Наиболее рационально применять штанговые центраторы, обеспечивающие их неподвижность относительно колонны НКТ, что приводит к снижению расхода электроэнергии и износа НКТ. Центраторы выполняются из пластмасс или композитных материалов, работоспособных в различных средах и температурных условиях. Несколько нижних штанг, расположенных в непосредственной близости к эксцентрично вращающемуся ротору, центраторами не оснащаются, Надежность работы ВШНУ во многом зависит от точности осевой подгонки ротора в статор, определяемой по разгрузке веса колонны штанг при помощи индикатора веса на подъемном агрегате или по вращению колонны штанг при перемещении ротора в статоре. Д®1 осевой подгонки ротора в компоновку колонны штанг, также как и в СШНУ, включаются укороченные штанги длиной от 1 до 3 м. Точная подгонка, как и в СШНУ, обеспечивается за счет захвата полированного штока (в ВШНУ имеющего название полированного или приводного вала) специальными полухомутами в любом месте поверхности. При работе установки ВШН поднимаемая пластовая жидкость движется в кольцевом зазоре между колоннами НКТ и штанг и далее через боковой отвод тройника поступает в промысловый коллектор. В ВШНУ наибольшее распространение получили НКТ и насосные штанги диаметром соответственно 73 и 22 мм. В установках используются стандартные полированные штоки диаметром 31 и 36 мм. Классификация ВШНУ В зарубежной и отечественной практике известно большое количество схем и типоразмеров ВШНУ, которые можно классифицировать следующим образом: по типу привода различают установки с электроприводом, объемным гидроприводом, приводом от ДВС и газового двигателя. Наиболее широкое применение получили ВШНУ с асинхронным электроприводом переменного тока с номинальной частотой вращения 1000 об/мин. Мощность электродвигателя в зависимости от подачи и давления насоса изменяется от 3 до 100 кВт и выше; по кинематической схеме привода различают ВШНУ с одно- и двуступенчатой трансмиссией. Простейшая схема ВШНУ, исключающая силовую трансмиссию, в которой двигатель напрямую соединяется с валом приводной головки, на практике не используется, поскольку требует применения тихоходных двигателей, что неэффективно. Одноступенчатая схема трансмиссии может быть реализована на базе ременной, цепной или зубчатой (цилиндрической или конической, встроенной в опорный корпус приводной головки, которая в этом случае выполняет также функцию редуктора) передачи, Двуступенчатая схема (первая ступень - ременная, вторая ступень - зубчатая передача) обеспечивает возможность использования быстроходных приводных двигателей с пониженными массогабаритными показателями, а также снижение передаточного отношения первой ступени, что позволяет осуществлять широкое регулирование частоты вращения штанг путем смены шкивов ременной передачи. В отдельных случаях для упрощения трансмиссии в качестве приводного - электродвигателя целесообразно использовать мотор- редуктор. Наибольшее распространение получили схемы приводов с одноступенчатой ременной трансмиссией; по типу ременной передачи различают приводы с клиноременными и зубчатыми ремнями. Наиболее часто в ВШНУ применяются обычные многорядные кпиноременные передачи. В некоторых конструкциях используются поликлиновые и зубчатые ремни. Последние обеспечивают передачу высоких крутящих моментов без скольжения, не требуют предварительного натяжения и периодической подтяжки, отличаются компактностью и высоким КПД. Передаточное отношение клиноременной передачи обычно не превышает 5, поэтому при использовании одноступенчатой трансмиссии с номинальной частотой вращения электродвигателя 1000 об/мин минимально возможная частота вращения штанг составляет 200 об/мин, что не всегда соответствует требованиям эксплуатации; по конструкции вала приводной головки существуют компоновки с цельным и полым валом. Компоновка с цельным валом, не требующая использования полированного штока, сложна при регулировке осевого положения ротора насоса относительно статора во время монтажа колонны штанг. В этой связи приводной вал, как правило, выполняется полым, что позволяет пропускать внутри него полированный шток и регулировать положение последнего в осевом направлении. по расположению приводного двигателя встречаются компоновки с вертикальным и горизонтальным расположением оси двигателя. Вертикальная компоновка двигателя характерна для одноступенчатых ременных трансмиссий, горизонтальная (когда ось приводного двигателя располагается перпендикулярно оси скважины) - для приводов с зубчатой конической передачей; по способу регулирования скорости приводного вала ВШНУ Различают приводы с регулируемым приводным двигателем (элекпгрическим или гидравлическим) и с регулируемым передаточным отношением трансмиссии, осуществляемым сменой шкивов ременной или введением в кинематическую схему механического вариатора передачи. Наиболее перспективно использование установок с частотно- регулируемым электроприводом переменного тока, обеспечивающим полный диапазон регулирования скорости (от 0 до 100%) и возможность поддержания оптимального в заданных условиях режима работы системы пласт-насос-привод. Другая функция регулируемого электропривода - плавный пуск и останов установки, что повышает надежность ее эксплуатации. Станция управления регулируемым электроприводом включает систему контроля и регистрации, что позволяет отслеживать режим работы привода и вносить необходимые управляющие воздействия; по кинематическому отношению рабочих органов винтового насоса (рис.9) различают насосы с однозаходным ротором (с кинематическим отношением 1:2) и многозаходными рабочими органами (с кинематическим отношение 2:3; 3:4; 4:5 и т.д.). Выбор кинематического отношения рабочих органов насоса обусловливается требуемыми эксплуатационными параметрами (диаметр, расход, давление, частота вращения) и технологическими возможностями производителей винтовых пар (см. ниже). по схеме закрепления статора различают трубный (статор закрепляется на резьбе на конце колонны НКТ) и вставной (статор спускается на штангах в сборе с ротором и крепится в НКТ с помощью специального замка) винтовые насосы. Области применения и эффективность схемы вставного насоса, позволяющая производить замену рабочих органов насоса (при их износе или в случае перехода на новых режим откачки) без подъема колонны НКТ подробно рассмотрена в разделе 2.2.11. настоящей книги; по схеме закрепления низа НКТ относительно обсадной колонны различают компоновки со свободным и заякоренным низом. по кинематической схеме насоса возможна реализация двух вариантов: с вращающимся внутренним элементом (винтом) и с вращающимся наружным элементом (обоймой). Типовая схема с вращающимся винтом - наиболее простая и экономичная как в конструктивном плане, так и при монтаже и эксплуатации - нашла повсеместное применение в зарубежной и отечественной практике. Схема с вращающейся обоймой, в которой поток пластовой жидкости поднимается по внутреннему каналу вращающихся полых штанг или труб, предложена с целью предотвращения отложения парафина на НКТ и снижения гидравлических потерь на трение за счет создания водяного кольца на стенках полых штанг. Такая схема является более сложной, требует использования полых штанг увеличенного диаметра и устьевого вертлюга для отвода жидкости из скважины и не нашла промышленного применения. |
Последнее изменение этой страницы: 2019-06-09; Просмотров: 360; Нарушение авторского права страницы