Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Основные физико-химические свойства нефтяных эмульсийСтр 1 из 16Следующая ⇒
Химический состав нефти Главные элементы, из которых состоит нефть, - углерод и водород. Содержание углерода и водорода в различных нефтях колеблется в сравнительно узких пределах и составляет в среднем для углерода 83,5-87% и для водорода 11,5-14%. Наряду с углеродом и водородом во всех нефтях присутствуют сера, кислород и азот. Азота в нефтях мало (0,001-0,3%), содержание кислорода колеблется в пределах от 0,1 до 1 %, однако в некоторых высокосмолистых нефтях оно может быть и выше. Значительно отличаются друг от друга нефти по содержанию среды. В нефтях многих месторождений серы сравнительно мало (0,1-1%). Но доля сернистых нефтей с содержанием серы от 1 до 3% в последнее время значительно возросла. В зависимости от содержания серы нефти подразделяются на малосернистые (содержание серы меньше 0,5%), сернистые (0,5-2%) и высокосернистые (более 2%). В очень малых количествах в нефтях присутствуют и другие элементы, главным образом металлы – ванадий, никель, железо, магний, хром, титан, кобальт, калий, натрий и др. Обнаружены также фосфор и кремний. Содержание этих элементов выражается незначительными долями процента. Из углеводородов в нефтях преобладает либо углеводороды метанового (парафинового), либо нафтенового ряда. Содержание углеводородов ароматического ряда значительно меньше. Простейшим соединением углеводородов парафинового ряда является метан. Молекула метана состоит из одного атома углерода и четырех атомов водорода (СН4). Следующими соединениями углеводородов парафинового ряда являются этан С2Н8,пропан С3Н8, бутан С4Н10 и т.д. Таким образом, каждый последующий член ряда отличается от предыдущего на группу СН2. Состав этих веществ можно выразить одной общей формулой. Если число атомов углерода в молекуле принять за n, то число атомов водорода в ней равно 2 n +2, а общая формула углеводородов парафинового ряда будет СnН2n+2. Углеводороды от метана до бутана включительно при нормальных условиях, т.е. при давлении 0,1 МПа и температуре t=0°С, находятся в газообразном состоянии. Их этих углеводородов в основном и состоят нефтяные газы. Углеводороды, содержащие от 5 до 17 атомов углерода в молекуле (С5Н12 – С17Н36), при нормальных условиях – жидкие вещества. Эти соединения входят в состав нефти. углеводороды, в молекулах которых имеется свыше 17 атомов углерода, - твердые вещества. Молекулы углеводородов нафтенового и ароматического рядов имеют циклическое строение. Углеводороды нафтенового ряда отличаются по составу от соответствующих углеводородов метанового ряда тем, что в их молекулах на два атома водорода меньше и общая формула углеводородов нафтенового ряда имеет вид СnН2n. Из углеводородов нафтенового ряда в нефтях были найдены циклобутан (С4Н8), циклопентан (С5Н10), циклогексан (С6Н12) и др. По физическим и химическим свойствам углеводороды нафтенового ряда близки к метановым плотность их приблизительно средняя между метановыми и ароматическими углеводородами.
Сепарационные установки В процессе подъема жидкости из скважин и транспортирования ее до центрального пункта сбора и подготовки нефти, газа и воды постепенно снижается давление в системе сбора, и из нефти выделяется газ. Объем выделившегося газа по мере снижения давления в системе увеличивается, и поток в нефтегазосборных коллекторах, включая и верхние участки НКТ, состоит из двух фаз: газовой и жидкой. Такой поток называется двухфазным или нефтегазовым потоком. Жидкая фаза может, в свою очередь, состоять из нефти и пластовой воды, содержание которой в потоке может изменяться от нуля до значительных величин. Следовательно, в случае содержание воды в продукции скважин мы имеем дело с трехфазным или нефтеводогазовым потоком, который состоит из нефти, газа и воды. Нефть и выделившийся из нее газ при нормальных условиях не могут храниться или транспортироваться вместе. Поэтому на нефтяных месторождениях совместный сбор нефти и газа и совместное транспортирование их осуществляют только на определенные экономически целесообразные расстояния, а затем и выделившийся газ транспортируют раздельно. Процесс отделения газа от нефти называется сепарацией. Аппарат, в котором происходит отделение газа от жидкой продукции скважин, называют нефтегазовым сепаратором. Однако в некоторых случаях в нефтегазовых сепараторах осуществляется к тому же отделение и сброс свободной воды. В этом случае нефтегазовый сепаратор называют нефтеводогазосепаратором или трехфазным сепаратором. Вывод отсепарированного газа из нефтегазовых сепараторов и раздельный сбор его осуществляется в различных пунктах системы сбора и центральных пунктах сбора подготовки нефти, газа и воды. Каждый такой пункт вывода отсепарированного газа называется ступенью сепарации газа. Ступеней сепарации может быть несколько, и окончательное отделение нефти от газа завершается в концевых сепараторах или в резервуарах под атмосферным давлением. Многоступенчатая сепарация применяется при высоких давлениях на устье скважин для лучшего разделения нефти и газа при последовательно снижающихся давлениях в сепараторах. Нефтегазовую смесь из скважины направляют сначала в сепаратор высокого давления, в котором из нефти выделяется основная масса газа, состоящего главным образом из метана и этана. Из сепаратора высокого давления нефть поступает в сепараторы среднего и низкого давления для окончательного отделения от газа. Сепараторы первой ступени в зависимости от конкретных условий на месторождении могут быть рассредоточены в нескольких пунктах по его территории или сосредоточены наряду с остальными ступенями сепарации на центральном пункте сбора и подготовки нефти, газа и воды. В последнем случае на месторождении не строятся газосборные трубопроводы. Транспортирование же газа всех ступеней сепарации от ЦПС до газокомпрессорной станции или до газаперерабатывающего завода обычно осуществляется по одному газопроводу. Сепараторы, применяемые на нефтяных месторождениях, условно подразделяются на следующие категории: 1) по назначению – замерно – сепарирующие 2) по геометрической форме и положению в пространстве – цилиндрические, вертикальные, горизонтальные и наклонные 3) по характеру проявления основных сил – гравитационные и центробежные (гидроциклонные) 4) по рабочему давлению – высокого (6,4 МПа и более), среднего (2,5-6,4 МПа), низкого (0,6-2,5 МПа) давления и вакуумные 5) по числу обслуживаемых скважин – индивидуальные и групповые 6) по числу ступеней сепарации – первой, второй, третьей ступени и т.д. 7) по числу разделяемых фаз – двухфазный (нефть+газ), трехфазный (нефть+газ+вода)
Вертикальные сепараторы имеют 4 секции: основная сепарационная секция, осадительная секция, секция отбора нефти, каплеуловительная секция. Основная сепарационная секция служит для интенсивного выделения газа из нефти. на работу сепарационной секции большое влияние оказывают степень снижения давления, температуры в сепараторе, физико-химические свойства нефти, особенно ее вязкость, конструктивное оформление ввода продукции скважин в сепаратор. Осадительная секция, в которой происходит дополнительное выделение пузырьков газа, увлеченных нефтью из сепарационной секции. Для более интенсивного выделения пузырьков газа из нефти ее направляют тонким слоем по наклонным плоскостям, увеличивая тем самым длину пути движения нефти, т.е. эффективность ее сепарации. Секция сбора нефти, занимающая самое нижнее положение в сепараторе и предназначенная как для сбора, так и для вывода нефти из сепаратора. Нефть может находиться здесь или в однофазном состоянии, или в смеси с газом – в зависимости от эффективности работы сепарационной и осадительной секций и времени пребывания нефти в сепараторе. Каплеуловительная секция, расположенная в верхней части сепаратора, служит для улавливания мельчайших капелек жидкости, уносимых потоком газа. В составе групповых замерных установок применение вертикальных аппаратов обеспечивает большую точность замеров расхода жидкости в широком диапазоне дебитов скважин, включая малодебитные. Однако вертикальные сепараторы имеют и существенные недостатки: 1) меньшая пропускная способность по сравнению с горизонтальными при одном и том же диаметре аппарата 2) меньшая устойчивость процесса сепарации при поступлении пульсирующих потоков 3) меньшая эффективность сепарации
Обслуживание вертикальных сепараторов сводится к поддержанию в них установленного давления и исправного состояния регулятора уровня, предохранительного клапана, манометра. В случае использования уровнемерных стекол в замерном сепараторе, особенно при вязких нефтях и низких температурах, требуется время от времени промывать соляровым маслом загрязненные стекла, отключая их соотвтствующими кранами от сепаратора. Горизонтальные сепараторы имеют большую пропускную способность по газу и жидкости, чем вертикальные. По некоторым данным, пропускная способность горизонтального сепаратора при одинаковых размерах примерно в 2,5 раза больше, чем вертикального. Это объясняется тем, что в горизонтальном сепараторе капли жидкости под действием силы тяжести падают вниз, перепендикулярно к потоку газа, а не навстречу, как это происходит в вертикальных сепараторах. Большинство горизонтальных сепараторов изготавливается из одной горизонтальной емкости со сферическими днищами (одноемкостные сепараторы), иногда применяют двухъемкостные горизонтальные сепараторы. Область применения горизонтальных сепараторов весьма обширна. Они используются для оснащения дожимных насосных станций, для первой, второй и третьей ступеней сепарации на центральных пунктах сбора и подготовки нефти, газа и воды. Пропускная способность горизонтальных сепараторов, применяемых для первой, второй и третьей ступеней сепарации, может достигать 30000 т/сут по жидкости на каждой ступени. Горизонтальные сепараторы широко применяются также для отделения и сбора свободной воды из продукции скважин на первой или последующих ступенях сепарации, что исключает попадание значительных объемов воды на установку по подготовке нефти. В этом случае они выполняют роль трехфазных сепараторов. Горизонтальные сепараторы некоторых конструкций для повышения пропускной способности и улучшения качества сепарации нефти оборудуются гидроциклонами. Отделение газа от нефти в гидроциклонах происходит за счет центробежных сил. Нефть, имеющая большую плотность, отбрасывается к стенкам гидроциклона, а газовый вихрь, вращаясь, движется в центре. Из гидроциклона нефть и газ отдельно поступает в емкости. Газонасыщенная нефть поступает на сливные полки и далее по стенке в нижнюю часть емкости. Сливные полки уменьшают пенообразование. Движение нефти тонким слоем по полкам способствует отделению нефти и газа. В емкости монтируется механический регулятор уровня, связанный с исполнительным механизмом – заслонкой, установленной после сепаратора на нефтяной линии. Регулятор обеспечивает в емкости необходимый уровень жидкости, предотвращающий прорыв свободного газа в нефтяной коллектор. Наибольшей пропускной способностью по жидкости и газу характеризуются горизонтальные сепараторы, в которые жидкость и газ, предварительно отделенные в подводящих трубопроводах, вводятся раздельно. Такие аппараты получили название сепараторов с предварительным отбором газа. Работает данный сепаратор следующим образом. Нефтегазовая смесь подводится к корпусу сепаратора по наклонным участкам трубопроводов. Уклон трубопровода может колебаться в пределах от 30 до 40°, а трубопровода – от 10 до 15°. К трубопроводу вертикально привариваются 3-4 газоотводных трубки диаметром 50-100 мм. Верхние концы этих трубок приварены к сборному коллектору (депульсатору) газа, подводящему этот газ к корпусу калеуловителя, в котором устанавливаются выравнивающая поток газа перфорированная перегородка и жалюзийная кассета. Капельки нефти, уносимые основным потокам газа по сборному коллектору, проходя жалюзийную кассету (или любую другую), прилипают к стенкам жалюзи и, скапливаясь на них, в виде сплошной пленки стекают вниз в корпус сепаратора. Из корпуса каплеуловителя газ направляется под собственным давлением 0,6 МПа на газоперерабатывающий завод. (ГПЗ). Нефть, освобожденная от основной массы газа в трубопроводе, поступает в корпус сепаратора через нижний патрубок ввода, в котором установлены сплошная перегородка, успокоитель уровня и две наклонные полки, увеличивающие путь движения нефти и способствующие выделению из нефти окклюдированных пузырьков газа, не успевших скоалесцироватиься и выделиться в наклонном трубопроводе. Давление выделившегося из нефти газа повышают при помощи эжектора, затем газ транспортируется на ГПЗ. Для регулирования вывода нефти из сепаратора имеется датчик уровнемера поплавкового типа и исполнительным механизмом. Раздельный ввод газа и жидкости в аппарат имеет ряд преимуществ. При совместном вводе нефтегазового потока в сепаратор с перепадом давления и перемешиванием фаз количество в нефти пузырьков газа размером 2-3 мкм примерно в 4 раза больше, чем в случае раздельного ввода нефти и газа в аппарат без перепада давления. Пузырьки газа таких размеров обычно находятся во взвешенном состоянии и не успевают выделиться из нефти за время ее движения в сепараторе. Таким образом, в сепараторах с раздельным вводом жидкости и газа унос свободного газа вместе с нефтью в несколько раз меньше, чем в сепараторах с совместным вводом продукции, и обычно не превышает 1% от объема жидкости. При раздельном вводе нефти и газа резко уменьшается также объем пены, образующейся в сепараторе в результате удержания части газа и жидкости во взвешенном состоянии, что особенно важно при подготовке нефтей, склонных к пенообразованию может привести к заполнению газового пространства пеной. При заполнении сепаратора пеной отказывает в работе регулятор уровня и пена поступает как в газопровод, так и в выкидную линию для жидкости. В настоящее время разработан ряд блочных сепараторов типа УБС с предварительным отбором газа на пропускную способность от 1500 до 16000 м3/сут. Объем емкости составляет от 30 до 160 м3. Технические данные сепараторов типа УБС приведены в таблице 1. Таблица 1.
Трехфазные сепараторы. По мере роста обводненности продукции скважин, поступающей в сепараторы, начинают преобладать капли воды больших размеров, которые могут легко коалесцировать и отделяться в виде свободной воды. Количество выделившейся из нефтяной эмульсии свободной воды зависит от физико-химических свойств нефти и воды, температуры потока, продолжительности транспортирования, интенсивности перемешивания потока (для поступления в сепаратор) и от многих других причин. Предварительная подача реагента в поток на определенном удалении от сепарационных установок способствует выделению свободной воды из эмульсии. В нефтепромысловой практике отделяемую свободную воду стремятся сбросить как можно раньше – до поступления продукции на установки подготовки нефти, так как нагрев этой воды связан с большим расходом теплоты. Предварительный сброс свободной воды осуществляется в трехфазных сепараторах. В настоящее время разработаны трехфазные сепараторы для работы на первой и последующих ступенях сепарации. Особенностью таких аппаратов является использование в одной емкости двух отсеков: сепарационного и отстойного, сообщающихся между собой через каплеобразователь. Сепаратор работает следующим образом. Смесь нефти, воды и газа по потрубку поступает в сепарационный отсек. Отсепарированный газ подается на ГПЗ, а смесь нефти и воды с небольшим количеством газа из сепарационного отсека по каплеобразователю перетекает в отстойный отсек, где нефть отделяется от воды и газа. Нефть по верхнему патрубку отводится на УПН, вода через исполнительный механизм, работающий за счет датчика регулятора уровня поплавкового типа, сбрасывается из сепаратора в резервуар – отстойник или под собственным давлением транспортируется на блочную кустовую насосную станцию (БКНС). Если в трехфазный сепаратор поступает нефть в виде стойкой эмульсии, то в каплеобразователь подводится с УПН горячая отработанная вода, содержащая поверхностно-активные вещества (ПАВ) для интенсификации разрушения этой эмульсии. Эффективность работы сепаратора любого типа характеризуется следующими 2 основными показателями: 1. количеством капельной жидкости, уносимой потоком газа из каплеуловительной секции; 2. количеством пузырьков газа, уносимых потоком нефти из секции сбора нефти. Чем меньше эти показатели, тем эффективнее работа нефтегазового сепаратора. В хорошо сконструированных нефтегазовых сепараторах обычно унос капелек жидкости вместе с газовым потоком не превышает 15 см3 на 1000 м3 отсепарированного газа, или около 10 г жидкости на 1000 кг продукции, поступающей в сепаратор.
По такой технологической схеме сконструированы и серийно изготовляются автоматизированные блочные установки предварительного сброса пластовой воды типа УПС.
Промысловая подготовка нефти Нефтяные эмульсии и условия их образования Вода в нефти появляется в результате поступления к забою скважины подстилающей воды, закачиваемой в пласт с целью поддержания давления. При движении нефти и пластовой воды по стволу скважины и нефтесборным трубопроводам происходит их взаимное перемешивание и дробление. Процесс дробления одной жидкости в другой называют диспергированием. В результате диспергирования одной жидкости в другой образуются эмульсии. Эмульсией называется такая система двух взаимно нерастворимых или вполне растворимых жидкостей, в которых одна содержится в другой во взвешенном состоянии в виде многочисленных капель (глобул). Жидкость, в которой распределены глобулы, называется дисперсионной средой, а вторая жидкость, распределенная в дисперсионной среде, - дисперсионной фазой. Нефтяные эмульсии бывают двух типов: «вода в нефти» и «нефть в воде». Почти все эмульсии, встречающиеся при добыче нефти, являются эмульсиями типа «вода в нефти». Содержание пластовой воды в таких эмульсиях колеблется от десятых долей процента до 90 % и более. Для образования эмульсии недостаточно только перемешивания двух несмешивающихся жидкостей. Необходимо еще наличие в нефти особых веществ – пригодных эмульгаторов. Такие природные эмульгаторы в том или ином количестве всегда содержатся в пластовой нефти. К ним относятся асфальтены, смолы, нефтерастворимые органические кислоты и такие мельчайшие механические примеси, как ил и глина. Адсорбируясь на поверхности эмульсионных глобул, они образуют своеобразную броню, препятствующую слиянию капель воды. Образованием пленки на поверхности глобулы воды объясняется «старение» эмульсии. Под процессом старения понимается упрочение пленки эмульгатора с течением времени. По истечении времени определенного времени пленки вокруг воды становятся очень прочными и трудно поддаются разрушению. В зависимости от размера капелек воды и степени старения нефтяные эмульсии разделяются на легкорасслаивающиеся, средней стойкости и стойкие. На стойкость водонефтяных эмульсий влияют и некоторые другие факторы: температура, содержание парафина, условия образования эмульсии, количество и состав эмульгированной воды. Стойкость эмульсии при добыче нефти скважинными штанговыми насосами ниже, чем при эксплуатации погружными электроцентробежными насосами.
Необходимость обезвоживания нефти на нефтяных месторождениях. Требования к качеству подготовленной нефти. Как уже отмечалось, нефть, добываемая не нефтяных месторождениях, содержит значительное количество пластовой, чаще всего высокоминерализованной воды. Нефтяные месторождения обычно удалены от нефтеперерабатывающих заводов на большие расстояния. Так, например, основное количество нефти, добываемой для ее переработки в европейскую часть СССР. В этих условиях перекачка вместе с нефтью огромных объемов пластовой воды приводит к большим убыткам. Необходимость обезвоживания нефти на промыслах обусловливается образованием стойких эмульсий, трудно поддающихся разрушению на нефтеперерабатывающих заводах, а также предохранением магистральных нефтепроводов от коррозии. При перекачке необезвоженной нефти по магистральному нефтепроводу в нижней части его может скапливаться коррозионно-активная минерализованная пластовая вода, приводящая этот трубопровод в аварийное состояние в сравнительно короткое время. Обезвоживание нефти на промыслах имеет важное значение для охраны окружающей среды. Пластовая вода, отделенная от нефти на нефтяном промысле, закачивается обратно в нефтесодержащие горизонты для поддержания в них технологически необходимого пластового давления, чем исключается использование для этих целей огромных количеств пресной воды, запасы которой на земном шаре не безграничны. Утилизация же пластовых высокоминерализованных вод в районах расположения нефтеперерабатывающих заводов всегда сопровождается опасностью засолонения вблизи рек, загрязнение которых отрицательно сказывается также на состоянии морей, в которые эти реки впадают. Таблица 2
Качество нефти, поставляемой не нефтеперерабатывающие заводы, в Советском Союзе регламентируется специальным ГОСТом, который устанавливает три группы нефтей в зависимости от степени их подготовки (табл.2). В составе I группы выделяется подгруппа нефти с содержанием хлористых солей до 40 мг/л и массовой долей воды до 0,5%.
Стабилизация нефти После промысловой сепарации в нефти остается значительное количество углеводородов С1-С4, значительная часть которых может быть потеряна при перекачке из резервуара в резервуар, при хранении и транспортировке нефти. Чтобы ликвидировать потери легких бензиновых фракций, предотвратить загрязнение воздуха, необходимо максимально извлечь углеводороды С1-С4 из нефти перед тем, как отправить ее на нефтеперерабатывающие заводы. Эта задача решается на установках стабилизации нефти, расположенных обычно в непосредственной близости от места ее добычи. Повышенные потери легких углеводородов объясняется тем, что им свойственны низкие температуры кипения – значительно ниже температуры нефти, при которой она находится в резервуарах. Давлением насыщенных паров или упругостью паров жидкости называется давление паров данной жидкости, находящейся с жидкостью в равновесном состоянии, при равной с жидкостью температуре. При наличии двухфахной системы в условиях равновесия не происходит ни конденсации паров в жидкость, ни испарения последней, т.е. при динамическом равновесии число молекул, переходящих в единицу времени из жидкой фазы в паровую, равно числу молекул, перешедших из паровой фазы в жидкую. Упругость паров возрастает с повышением температуры, зависит от состава жидкой и паровой фазы. Упругость насыщенных паров нефти определяет в лаборатории на специальных аппаратах. Давление насыщенных паров нефти регламентируется ГОСТом. С целью снижения давления насыщенных паров и на этой основе сокращения потерь нефти от испарения производят стабилизацию нефти. Существуют различные методы стабилизации нефти. Наибольшее распространение получили методы ректификации и горячей сепарации нефти. метод горячей сепарации является наиболее простым. Нефть с установки подготовки нефти при температуре или после дополнительного подогрева в нагревателях. Температура сепарации в зависимости от состава нефтей и заданного значения упругости паров стабильной нефти обычно выбирается в пределах от 40 до 80°С. Давление сепарации в аппарате С-1 устанавливается близким к атмосферному. С помощью компрессоров ВК-1, отсасывающих паровую фазу, давление в сепараторе может быть снижено до 0,085-0,098 МПа. В сепараторе С-1 происходит однократное испарение легких фракций нефти. стабильная нефть из сепаратора через холодильник Х-1 отводится в резервуарный парк. паровая фаза отбирается из сепаратора компрессором или эжектором и через холодильник Х-2 направляется в бензосепаратор С-2. В результате охлаждения более тяжелые углеводороды конденсируются и собираются в бензосепараторе, откуда конденсат откачивается насосом. Не сконденсировавшиеся газы из сепаратора С-2 направляются в газовую систему. Метод горячей сепарации имеет ряд недостатков. К ним относятся низкая степень стабилизации нефти и низкое качество полученного конденсата. Стабилизация нефти не является только средством сокращения потерь нефти. перед процессом стабилизации ставится и другая не менее важная задача – создание на основе этого процесса прочной сырьевой базы развивающейся нефтехимической промышленности нашей страны. Перед нестабилизационными установками ставится задача по извлечению определенной части пантановых фракций, достаточной для удовлетворения потребности этих нефтехимических производств.
Аппаратура и оборудование установок подготовки нефти и их обслуживание Отстойники нефти Отстойник ОГ-200°С предназначен для разделения нефтяных эмульсий на нефть и пластовую воду. Техническая характеристика ОГ-200°С приведена ниже.
Емкость отстойника разделена на сепарационный и отстойный отсек, которые сообщаются друг с другом при помощи двух коллекторов – распределителей, расположенных в нижней части корпуса. В верхней части сепарационного отсека установлены распределитель эмульсий со сливными полками и сепаратор газа. В нижней части отстойного отсека расположены два трубчатых перфорированных коллектора, над которыми размещены распределители эмульсии коробчатой формы. В этой части имеются также два коллектора для пропарки аппарата. В верхней части отсека расположены четыре сборника нефти, соединенные со штуцером выводы нефти из аппарата. В передней части корпуса перегородкой и переливными устройствами выделена водосборная камера, в которой помещен регулятор межфазного уровня. Отстойник оснащен приборами контроля за параметрами технологического процесса, регуляторами уровней раздела фаз, предохранительной и запорной арматурой. Для удобства обслуживания приборов, расположенных в верхней части корпуса, аппарат снабжен площадкой обслуживания. Отстойник работает следующим образом. Подогретая эмульсионная нефть с введенным в нее реагентом-деэмульгатором поступает в распределитель эмульсии сепарационного отсека и по сливным полкам и стенкам корпуса стекает в нижнюю часть отсека. Выделившийся из нефти в результате ее нагрева и снижения давления газ проходит через сепаратор и при помощи регулятора уровня «нефть — газ» выводится в газосборную сеть. Нефтяная эмульсия поступает из сепарационного в отстойный отсек по двум перфорированным коллекторам, проходит через отверстия коробчатых распределителей и поднимается в верхнюю часть отсека. При этом происходит промывка нефти пластовой водой и ее обезвоживание. Обезвоженная нефть поступает в сборный коллектор и выводится из аппарата. Отделившаяся от нефти вода через переливные устройства поступает в водосборную камеру и с помощью регулятора уровня «вода — нефть» сбрасывается в систему подготовки дренажных вод. Отстойник оснащен приборами контроля и автоматического регулирования, позволяющими контролировать давление среды в аппарате, уровень раздела фаз в каждом из отсеков, а также обеспечивающими автоматическое поддержание уровней раздела фаз. Для контроля за давлением среды в аппарате на верхней части его корпуса устанавливается технический манометр. Контроль за уровнями раздела фаз «нефть — газ» и «нефть— пластовая вода» в отсеках аппарата осуществляется визуально при помощи четырех указателей уровня. Автоматическое поддержание уровня раздела фаз «нефть — газ» в первом отсеке отстойника и уровня раздела газ «нефть— вода» во втором отсеке осуществляется при помощи регуляторов межфазного уровня. На принципе вертикального движения жидкости (аналогичном отстойному отсеку ОГ-200С) сконструированы и производятся отстойники типа ОВД-200. Отстойник нефтяной ОБН-3000/6 предназначен для разделения водонефтяной эмульсии, сброса выделившейся воды и получении кондиционной нефти. Устройство и работа отстойника. Отстойник выполнен в моноблоке и состоит из блока отстоя, площадки обслуживания, запорно-регулирующей арматуры и системы контроля и управления. Блок отстоя представляет собой технологическую емкость диаметром 3400 мм (объем 200 м3), устанавливаемую при помощи трех опор на фундаменте. Для более полного использования объема емкости она оснащена распределительным устройством для ввода водонефтяной эмульсии, смонтированным по оси отстойника. Сборник воды (длинная перфорированная труба) расположен внизу емкости, а сборник нефти — поперек емкости в ее верхней части. На сборнике имеются два штуцера для выхода нефти, позволяющие вести технологический процесс в режимах полного и неполного заполнения. В емкости имеются люки-лазы, предохранительный клапан, дренажная система. Обслуживание отстойника. Для пуска отстойника необходимо: открыть задвижки на линии отвода выделившейся воды и отстоявшейся нефти; открыть задвижку на линии ввода эмульсии; включить систему контроля и управления; отрегулировать задатчик прибора и перевести его на автоматический режим. При работе отстойника оператор обязан: периодически контролировать ход технологического процесса по контрольно-измерительным приборам; периодически осматривать установку и средства автоматики; проверять работоспособность предохранительных клапанов 1 раз в смену. Для остановки отстойника необходимо: отключить систему автоматического контроля и управления; задвижку на линии ввода сырой продукции; закрыть задвижки на линиях отвода выделившейся воды и отстоявшейся нефти. Электрокоалесцеры По мере истощения нефтяных месторождений возрастает доля устойчивых нефтяных эмульсий, трудно поддающихся разрушению в электродегидраторах традиционных конструкций. В связи с этим в последние годы разработаны электрокоалесцирующие устройства, обеспечивающие устойчивость электрического поля на высокообводненных устойчивых эмульсиях и их эффективное разрушение. К электрокоалесцерам предъявляются следующие требования: работа при более высокой, чем в обычных электродегидраторах, напряженности электрического поля; создание условий, исключающих пробой между электродами. Для обработки на промыслах высокообводненных (содержащих воды более 10%) эмульсий создан трехходовой электродегидратор, представляющий собой комбинацию электрокоалесце-ра с изолированными электродами и отстойника. Аппарат снабжен заземленным цилиндром, стержневым и колоколообразным электродами, отделенными от цилиндра, изоляторами. В аппарате осуществляется двукратный резкий поворот эмульсий, в результате чего из нее выпадают крупные капли воды, осаждающиеся в нижней части емкости. Кольцевые зазоры между стержневым электродом и цилиндром, цилиндром и колоколообразным электродом, а также между последним и корпусом уменьшаются в направлении от стержневого электрода к корпусу. Это обеспечивает обработку эмульсии в разных по напряженности электрических полях при условии трехкратного протока ее через межэлектродные пространства с изменением направления движения потока при переходе из одной зоны в другую. В каждой последующей зоне эмульсия становится менее обводненной и по мере освобождения от крупных капель воды приобретает более равномерную мелкодисперсную структуру. Из зоны электрообработки нефть по перепускной трубе поступает в отстойную зону аппарата, из которой удаляется через штуцер. Вода из нижней части емкости, обтекая перегородки, направляется к выпускному патрубку. Предусмотрена автоматическая регулировка вывода воды из аппарата. Пропускная способность трехходового электродегидратора, совмещенного с отстойником в емкости объемом 200 м3, достигает 6000 т/сут. Высокую надежность и эффективность показал в процессе опытно-промышленной эксплуатации электрокоалесцер ЭКУ-3 с ограниченной областью формирования токопроводящих цепочек, созданный Казанским педагогическим институтом, ВНИИ-нефтемашем и объединением «Татнефть». Высокое напряжение от трансформатора через проходной изолятор подается на электрод, размещенный по оси цилиндрического заземленного корпуса, служащего вторым электродом. Между электродами установлена перфорированная труба из диэлектрического материала. Диаметр отверстий пер форации в несколько раз меньше толщины стенки трубы. Перегородка разделяет входную и выходную полости аппарата. Поток сырья поступает внутрь перфорированной трубы, где эмульсия обрабатывается электрическим полем большой напряженности вблизи высокопотенциального электрода. Затем эмульсия через отверстия, называемые областями ограниченного формирования цепочек, поступает на дообработку в зону с меньшим значением напряженности электрического поля вблизи заземленного корпуса. Разрушенная эмульсия с укрупненными каплями воды удаляется через нижний штуцер и направляется в отстойник или электродегидратор для отделения воды. Расчленение потока водонефтяной эмульсии на элементарные струйки при помощи отверстий в трубе способствует тому, что количество воды в каждом элементарном канале ограничивается, исключается втягивание капель воды из прилегающего объема, токопроводящая цепочка получается малого сечения и большого сопротивления; ток элементарного короткого замыкания через цепочку, прежде чем достигнуть критической величины, вызывает вскипание эмульсии и блокировку каналов парогазовыми пузырьками. В результате достигается самоблокировка тока в каждом отверстии и не возникает короткого замыкания между электродами. Аппарат позволяет поддерживать высокую напряженность поля и обеспечивает эффективную коалесценцию капель пластовой воды на стадии обезвоживания нефти, а также эффективную коалесценцию капель пластовой и пресной воды на стадии обессоливания нефти. Применение такого аппарата также целесообразно для разрушения ловушечных эмульсий в промысловых и заводских условиях. Подготовка электродегидратора к заполнению До включения электродегидратора в эксплуатацию необходимо убедиться в правильности наладки и работоспособности: а) сигнализатора уровня напряжения, автоматически отключающего напряжение при исчезновении или резком снижении внешнего напряжения; б) регулятора уровня, автоматически поддерживающего постоянный уровень раздела фаз и стабильность электрического режима в аппарате; в)двух реле максимального тока, автоматически отключающих напряжение при возникновении перегрузки в любой фазе; г) предохранительного клапана, срабатывающего при увеличении рабочего давления до расчетного (1 МПа); д) манометров для контроля за рабочим давлением; е) термометра для контроля за температурой; ж) пробоотборных клапанов для визуального контроля за процессом обессоливания в электродегидраторе. Необходимо проверить также систему сигнализации, положение контактора, наличие напряжения в цепях аварийных отключений электродегидратора. Перед заполнением электродегидратора жидкостью проверяется и фиксируется межэлектродное расстояние. Для этого проводится специальный осмотр плоскостей электродов. Выступающие прутки и концы шпилек подвесных изоляторов должны быть обрезаны. Оставлять посторонние предметы и монтажный инструмент на электродах недопустимо. Затем проводится осмотр состояния проходных и подвесных изоляторов, а также всех токонесущих элементов. Поверхности всех изоляторов тщательно очищаются спиртом (ацетоном), высушиваются, и покрываются сухим трансформаторным маслом. Пуск печи Подготовительные работы. Перед пуском необходимо произвести внешний осмотр блока. Между горелками должны быть поставлены асбестовые листы. Щели между огнеупорными призмами соседних горелок должны быть заделаны огнеупорной мастикой. Во избежание сгорания концов распределительных трубок горелок последние не должны выходить внутрь туннелей огнеупорных призм. Зазоры между трубами и отверстиями в огнеупорных призмах должны быть заделаны огнеупорной мастикой заподлицо с торцами трубок. В туннелях призм не должно быть строительной крошки, сора и т. п. Необходимо проверить манометры, убедиться, что отводы и манометры не забиты строительной крошкой, ржавчиной и т. д. Все разъемные соединения должны быть плотно затянуты, а вентили—плотно закрыты. Заполнение топливным газом обвязочных трубопроводов. При заполнении трубопроводов газом присутствие людей в печи запрещается. Заполнение топливным газом обвязочных трубопроводов разрешается после опрессовки рабочего змеевика печи. Средства пожаротушения должны быть полностью укомплектованы, смонтированы и находиться в состоянии готовности. Проверить работу шиберов и полностью их открыть. Плотно закрыть воздушные заслонки на горелках. Убедиться что давление газа в подводящем трубопроводе находится в пределах, указанных в режимной карте. Открыть полностью вентиль от заполняемого коллектора к продувочной свече. Через дренажные вентили продувочной свечи спустить скопившийся в коллекторе конденсат, после чего дренажные вентили плотно закрыть. Включить все манометры обвязки блока и плавно открыть задвижку на стояке заполняемого и подводящего газопровода. Газопровод и коллектор продуть на свечу не менее 10 мин, после чего плотно закрыть задвижки на стояке заполняемого коллектора и отводе к продувочной свече. В описанном порядке последовательно один за другим заполнить топливным газом все коллекторы обвязки печи. Убедиться, что газ не поступает в топку, для чего проверить все вентили горелок на плотность закрытия. Вентили, пропускающие газ, легко обнаружить по характерному шипению. Розжиг панельных горелок должны вести два человека. Тщательно продуть топку паром в течение 15 мин после появления пара из дымовой трубы. Ввести зажженный растопочный факел и поместить перед одной из горелок. Убедиться через смотровое стекло, что он горит и находится вблизи панельной горелки. Открыть вентиль подачи газа в разжигаемую горелку и убедиться через смотровое окно, что горелка зажжена. Постепенно открывать воздушную заслонку до установленного опытным путем зазора между заслонкой и диффузором горелки (до появления светлого пламени). От горящей горелки зажечь соседнюю с ней по ряду горелку открытием вентиля газа, затем воздушной заслонки. По принципу «последующая от предыдущей» последовательно зажечь все горелки блока. При розжиге горелок постоянно следить за давлением газа в коллекторах. При падении давления газа на коллекторах ни же 0,06 МПа или повышенная должен быть прекращен. Эксплуатация блока. Систематически наблюдать за процессом горения. Из дымовой трубы должны выходить совершенно прозрачные продукты сгорания. Следить за давлением газа и коллекторах, за температурой наружных стенок распределительных камер горелки. Резкое повышение температуры свидетельствует о том, что горение идет в распределительной камере. При этом следует отключить горелку и продуть сопло. При возникновении хлопков необходимо отключить горелку и прочистить сопло. В процессе эксплуатации по цвету пламени необходимо провести корректировку установленного зазора между заслонкой и диффузором для каждой горелки. Пламя горелки, подача воздуха к которой отрегулирована правильно, должно иметь вид коротких голубоватых язычков. Недостаточное открытие воздушной заслонки (мало воздуха) характеризуется желтым пламенем, иногда с копотью. Появление у нормально отрегулированной горелки длинного синего пламени свидетельствует о наличии в топливном газе большого количества углеводородного конденсата. Остановка печи Для остановки печи необходимо закрыть задвижку на стояках и газовой линии перед печью и выключить каждую горелку в следующем порядке: плотно закрыть воздушную заслонку; плотно закрыть газовый вентиль; убедиться через смотровое окно, что доступ газа в горелку прекращен. Оставшийся в газовых коллекторах печи газ необходимо выжечь в одной или двух горелках, после чего плотно закрыть вентили на этих горелках. Циркуляцию нефти через печь продолжать до снижения температуры нефти до 40 °С, после чего закрыть задвижки на входе нефти в печь. Аварийная остановка печи Печь должна быть немедленно остановлена при: внезапном прекращении подачи электроэнергии, сырья, воды, пара; выходе из строя ретурбенда, вальцовки или пробки; прогаре труб, пропуске сварного шва на змеевике печи; разрушении кладки печи. Аварийная остановка печи производится в следующем порядке: закрываются задвижки входа газа; подается пар в аварийную емкость; закрываются задвижки на входе и выходе нефти из печи; открывается линия сброса нефти со змеевика печи в аварийную емкость; в топку печи подается пар; после снижения давления в змеевике ниже давления пара по показанию манометра на паровой линии пар подается в змеевик; закрываются газовые вентили и воздушные заслонки на горелках, открываются вентили на свечи. Подготовка печи к растопке Перед пуском печи в работу необходимо: проверить внешним осмотром поверхность печи, запальник продувочную свечу, исправность, контрольно-измерительных приборов убедиться в отсутствии посторонних предметов в топке-: проверить исправность подлежащего включению газопровода и установленных на нем кранов и задвижек (краны должны быть закрыты, а продувочные свечи открыты); проверить плотность резьбовых, фланцевых и сварных соединений, а также герметичность кранов мыльным раствором; пользоваться открытым огнем запрещается; в течение 10 мин продуть подключаемый участок газопровода через продувочную свечу. Давление газа перед горелками ФГМ-95 должно быть в пределах от 0,05 до 0,1 МПа. Пуск печи в работу Открыть задвижки на линиях входа и выхода нефти из печи, установить нормальный расход нефти через змеевик, убедиться в герметичности змеевика и ретурбендов. Перед зажиганием горелок провентилировать камеру сгорания, в течение 20 мин при полном открытии шибера дымохода. Разрежение в топке печи должно быть не менее 20—50 Па. Зажечь переносной запальник. Горящий запальник ввести через смотровое отверстие в топку, к выходному отверстию зажигаемой горелки. При этом воздушная заслонка должна быть закрыта. Убедившись, что пламя переносного запальника горит устойчиво, плавно открыть рабочий кран перед горелкой и зажечь газ, выходящий из горелки. После воспламенения газа на горелке начинают подавать воздух. Это осуществляется постепенным открытием воздушно-регулировочной заслонки. Подачу газа и воздуха следует регулировать до получения устойчивого бездымного горения, факел горелки должен быть спокойным, прозрачным и иметь синеватую окраску в ядре, желтую— в конце факела. Увеличивая нагрузку на горелку, сначала необходимо увеличивать подачу газа, а потом воздуха. Если газ не загорелся, необходимо немедленно закрыть кран перед горелкой и устранить причину неисправности. Повторное зажигание горелки разрешается только после устранения неисправности и повторного вентилирования топки. Зажигание горелок производить последовательно. При вводе запальника в топку и зажигании горелок следует стоять сбоку смотрового окна во избежание ожога от случайного выброса пламени. Растопка печи должна производиться на малом горении с последующим плавным увеличением нагрузки на горелку. Повышать температуру нагрева нефти следует постепенно на 20—30 °С в час. Контроль за работой печи В процессе работы печи дежурный персонал обязан следить за: а) режимом горения газа; б) температурой нефти на выходе из печи; в) давлением нефти в змеевике; г) состоянием труб змеевика, при наличии отдулин в трубах работать запрещается; д) состоянием ретурбендов — при наличии пропуска нефти через них работать запрещается; е) разрежением в топке по тягомеру и поддерживать его на заданном уровне при помощи шибера; ж) цветом дыма, из дымовой трубы в летнее время должны выходить совершенно прозрачные продукты сгорания, а в зимнее время—дым белого цвета. Для нормальной работы печи необходимо поддерживать определенную температуру дымовых газов — она не должна превышать 500 °С. При более высокой температуре возможен пережог жаровых труб. В зимнее время, во избежание конденсации водяных паров, образования льда, ухудшения или полного прекращения тяги, температура дымовых газов должна быть не ниже 120 °С. Температуру уходящих газов следует контролировать по показаниям термометров на дымовых трубах. Если при работе печи погаснет одна из горелок, следует немедленно прекратить подачу газа в горелки, провентилировать топку и дымоходы, установить причину нарушений режима горения и снова разжечь горелки. Исправность действия взрывных клапанов следует проверять 1 раз в смену. Необходимо систематически следить за герметичностью газовой обвязки при помощи мыльной пены.
Нормальная остановка печи Постепенно снизить подачу воздуха, а затем газа к горелкам При достижении температуры нефти на выходе 30 °С отключить горелки. Закрыть на газопроводах рабочие и контрольные краны, открыть кран на продувочные свечи. Закрыть задвижки по входу нефти. При снижении температуры нефти до 20 °С закрыть задвижки на выходе нефти. При необходимости нефть из змеевика сбросить в аварийную емкость. Осмотреть состояние змеевика, ретурбендов, дымовых труб, камеры сгорания, газовой обвязки.
Аварийная остановка печи Оператор обязан немедленно остановить печи и сообщить об этом начальнику установки или диспетчеру цеха в случае: падения давления газа у горелок ниже допустимого предела или полного прекращения поступления газа к горелкам; резкого повышения давления газа у горелок, что может быть при неисправности регулятора; самопроизвольного погасания горелок; пожара на установке; обнаружения течи в змеевике, ретурбеидах; прекращения циркуляции нефти в системе (отключение электроэнергии, насосов). При аварийной остановке необходимо: немедленно закрыть задвижку на подводящем газопроводе; открыть задвижку сброса нефти в аварийную емкость; закрыть рабочие, контрольные задвижки печей и открыть кран на продувочные свечи.
Блок нагрева БН-5,4 Блок нагрева предназначен для нагрева нефтяных эмульсий в процессе деэмульсации нефти термохимическим способом. Кроме того, блок нагрева можно использовать для подогрева высоковязких парафинистых нефтей с целью их нормальной транспортировки по трубопроводам. Блок БН-5,4 состоит из четырех последовательно соединенных по нагреваемому продукту нагревательных элементов, дымоходы которых выведены в общую дымовую трубу. Каждый элемент представляет собой жаротрубный нагреватель типа «труба в трубе», который включает в себя корпус, жаровую трубу и блок газовых горелок БГ-2П. Со стороны горелочных блоков нагревательные элементы помещены в укрытие, в котором расположены узел регулирования топливного газа, приборы КИП и А. Нефтяная эмульсия нагревается в межтрубном пространстве, образованном корпусом и жаровой трубой нагревательного элемента, по которой проходят продукты сгорания, образовавшиеся в результате сжигания топливного газа. Любой из нагревательных элементов можно отключить без остановки всего блока, т. е. можно направить нефтяную эмульсию мимо любого из нагревательных элементов. Основным параметром, подлежащим регулированию, является температура нефтяной эмульсии на выходе из блока нагрева. Она регулируется датчиком температуры. Для регулирования давления газа перед горелками применяют редуктор давления газа. При чрезмерном повышении или понижении давления в газовой линии, повышении температуры нефти и дымовых газов система питания горелок отключается клапаном-отсекателем. Усовершенствованной модификацией БН-5,4 является блок нагрева БН-М, в котором обвязка нагревательных элементов выполнена параллельно, что позволило снизить гидравлическое сопротивление этого аппарата.
Розжиг горелок Перед розжигом горелок необходимо убедиться, что запорный кран перед горелкой закрыт, а кран на продувочной свече открыт. За 10—15 мин до начала розжига полностью открывается воздушная заслонка, чтобы топки и газоходы провентилировались. После этого продувается, газопровод, подводящий газ к горелкам, через продувочную: свечу в течение 3—5 мин. После продувки кран на продувочной свече закрывается. Разжигается запальник и вводится в запальное отверстие. После этого медленно открывается рабочий кран горелки и зажигается горелка. Запальник вынимается и тушится.
Остановка блоков нагрева При остановке постепенно в течение 10—15 мин снижается расход топливного газа. При снижении температуры нефти на выходе из блоков до 30°С прекращается подача газа к горелкам, закрываются рабочая и контрольная газовые задвижки, открывается кран на продувочную свечу. Топка проветривается. Прекращается подача нефти остановкой насосов и закрываются задвижки на входе и выходе блока. Аварийная остановка Блоки нагрева аварийно останавливаются: а) в случае сильного пропуска во фланцевых соединениях б) при превышении давления по нефти выше разрешенного, в) в случае прекращения расхода нефти через блочный нагреватель; г) при накаливании докрасна элементов горелки; д) если падение давления газа у горелок ниже допускаемого, при полном прекращении подачи газа, а также при повреждении газопроводов и газовой арматуры; е) при возникновении вблизи пожара, угрожающего блоку При аварийной остановке блока необходимо: перекрыть задвижку на газопроводе к блочному нагревателю, а затем у каждой горелки; плавно уменьшить подачу эмульсионной нефти и остановить насос; закрыть задвижки на входе и выходе нефти из блока.
Печь трубная блочная ПТБ-10 Блочная трубчатая печь ПТБ-10 предназначена для нагрева нефтяных эмульсий и нефти при их промысловой подготовке и транспортировании. Блочная трубчатая печь ПТБ-10 представляет собой комплекс, состоящий из двух основных блоков: печи трубчатой ПТ-10 и блока управления и сигнализации БУС-10. Трубчатая печь ПТБ-10 поставляется и транспортируется к месту ее монтажа в разобранном виде. В комплект поставки входят два крупногабаритных блока: камера теплообменная и блок основания печи, а также соединяющие их элементы трубопроводов нефти, воздуха, отопления, монтажные детали прокладки, крепежные и другие изделия. Теплообменная камера, или собственно печь устроена следующим образом. Корпус теплообменной камеры образован каркасом и двумя коробами. Каркас теплообменной камеры представляет собой пространственную металлическую сварную конструкцию из профильного проката, имеющую с внутренней стороны две металлические стенки, пространство между которыми заполнено теплоизоляционным материалом. Короба снабжены гляделками для осмотра внутренней части камеры при работе печи. Наружная стенка выполнена из обычной листовой углеродистой стали, внутренняя стенка (обшивка)—из жаростойкой стали. Внутренняя обшивка служит для защиты теплоизоляционного материала от разрушения. В качестве теплоизоляционного материала использована вата каолинового состава выдерживающая рабочую температуру до 1100°С. В верхней части теплообменной камеры расположены два откидывающихся предохранительных взрывных клапана. Внутри теплообменной камеры расположены четыре змеевика, состоящие из стальных бесшовных труб диаметром 159 мм со спиральным оребрением и двойников (калачей). Змеевики расположены парами, симметрично, слева и справа от продольной осп теплообменной камеры. Змеевиковые трубы по концам и в середине опираются на трубные доски из жаростойкой стали. На нижней стенке (полу) теплообменной камеры установлены четыре сопла-конфузора для ввода продуктов сгорания в камеру и направляющие аппараты для улучшения инжекции рециркулируемых дымовых газов. Для выхода дымовых газов из камеры в нижней части боковых стенок каркаса предусмотрены дымоходы, к фланцам которых крепятся дымовые трубы. Принцип работы теплообменной камеры заключается в том, что от горячих продуктов сгорания теплота через стенки труб змеевиков передается подогреваемой среде. Рабочий процесс в теплообменной камере проходит следующим образом. Раскаленные продукты из камер сгорания через четыре сопла-конфузора в виде плоских струй поступают во внутреннее пространство теплообменной камеры.. Скорость струй у устья сопел-конфузоров составляет 100—120 м/с, температура струй достигает 1600—1700°С. Струи инжектируют уже охлажденные дымовые газы обменной камеры, создавая интенсивную рециркуляцию продуктов сгорания, смешиваются с ними и охлаждаются. Таким образом, трубы змеевика омываются охлажденными продуктами сгорания с температурой 700—900 °С. Блок основания печи представляет собой конструкцию, предназначенную для установки на нем теплообменной камеры, монтажа камер сгорания, горелок, трубопроводов топливного газа, дутьевых вентиляторов, воздуховодов, приборов контроля и регулирования. Рама-основание блока представляет собой пространственную металлическую конструкцию, сваренную из профильного проката. На верхние блоки правой части рамы-основания устанавливается теплообменная камера и крепится к ним болтами. В пролетах правой части основания на кронштейнах установлены четыре камеры сгорания, к которым крепятся горелки. Здесь же располагаются воздуховоды и трубопроводы подачи топливного газа к основным и запальным горелкам. Левая часть рамы основания служит для размещения утепленного укрытия, состоящего из отдельных стеновых панелей и панелей крыши, в котором размещаются узел регулирования топливного газа, регулятор соотношения «газ — воздух», щит манометров. На раме-основании блока размещены два вентилятора ВВД № 11. Камера сгорания является источником-генератором тепловой энергии для технологического процесса подогрева за счет высокоскоростного потока продуктов сгорания с высокой температурой. открыть вентили, установленные на импульсных трубах, и уравнительный вентиль дифференциального манометра, затем вентили на трубах его плюсовой: и минусовой камер; закрыть уравнительный вентиль дифференциального манометра; проверить наличие циркуляции нефти через змеевики печи по показаниям вторичного прибора (дифференциального манометра), установленного на пульте управления; продуть на свечу трубопровод подачи газа к основным и запальным горелкам камер сгорания; открыть заслонки на воздуховодах перед камерами сгорания и зафиксировать их в открытом положении; степень открытия заслонок должна быть различной с таким расчетом, чтобы расход воздуха и его давление перед каждой камерой сгорания были одинаковыми; открыть задвижку и вентили на коллекторах подачи газа к основным и запальным горелкам; подать напряжение на блоки управления электродвигателями вентиляторов и включить поочередно в работу электродвигатели дутьевых вентиляторов; после включения в работу вентиляторов розжиг запальных и основных горелок осуществляется автоматически; после розжига визуально через гляделки камер сгорания необходимо визуально убедиться в наличии пламени запальных и основных горелок. Остановка Для остановки трубчатой печи необходимо: понизить точку настройки регулятора температуры с тем, чтобы снизилась температура нагрева среды в змеевиках печи; понизить точку настройки регулятора давления газа с тем, чтобы понизить скорость горения топливного газа до минимума; по показаниям термометра убедиться в постепенном снижении температуры нагрева нефти; уменьшить расход подогреваемой нефтяной эмульсии, прикрывая задвижку на трубопроводе ввода ее в печь; закрыть полностью вентили на коллекторе подачи газа к горелкам камер сгорания и вентили на трубопроводах подачи газа к запальным горелкам; остановить вентиляторы; закрыть задвижку на трубопроводе топливного газа; открыть вентили и сбросить остатки газа из газопровода на продувочную свечу; закрыть задвижку на трубопроводе ввода нефти в печь; после снижения температуры нефти закрыть задвижку на трубопроводе вывода ее из печи; отключить от сети питания блоки управления электродвигаелями и пульт управления.
Аварийная остановка Работа блочной трубчатой печи должна быть немедленно прекращена и следующих случаях: а) если давление в змеевиках печи поднимется выше разрешенного, несмотря на соблюдение всех требований и принятие мер, указанных в инструкции по безопасному обслуживанию; б) при неисправности взрывных предохранительных клапанов; в) при неисправности манометров и невозможности определить давление по другим приборам; г) если в змеевиках, коллекторах, трубопроводах будут обнаружены течи, потения в сварных швах, фланцевых, резьбовых соединениях; д) при неполном комплекте крепежных деталей фланцевых соединений; е) при неисправности в системе защиты и блокировки печи; ж) в случае пожара, непосредственно угрожающего печи; з) в других случаях, предусмотренных в инструкции по без опасному обслуживанию печи. При аварийной остановке печи необходимо: перекрыть задвижку на трубопроводе подачи газа к печи и вентили к горелкам каждой камеры сгорания; открыть вентили на продувочную свечу; остановить двигатели привода вентиляторов: уменьшить подачу нефти к змеевикам постепенным перекрытием задвижки на трубопроводе подачи нефти в печь; после охлаждения змеевиков полностью закрыть задвижки на трубопроводах ввода и вывода нефти из печи.
Теплообменные аппараты Теплообменные аппараты делятся на следующие группы: 1) погружные холодильники; 2) теплообменники типа «труба в трубе»; 3) кожухотрубчатые теплообменники; 4) аппараты воздушного охлаждения; 5) теплообменники непосредственного смешения. Погружные теплообменники представляют собой заполненные водой металлические ящики, в которых расположен один или несколько змеевиков. По змеевикам движутся охлаждаемые пары или жидкость. Эти аппараты занимают много места, имеют низкий коэффициент теплопередачи. Погружные теплообменники применяются в качестве конденсаторов паров ректификационных колонн и концевых холодильников, на установках, запроектированных и построенных в начале 50-х годов. В частности, такие аппараты в настоящее время есть в составе установок комплексной подготовки нефти в объединении «Башнефть». Впоследствии эти аппараты будут полностью заменены более совершенными конструкциями. Теплообменники типа «труба в трубе» легко разбираются для чистки и используются при любой разности температур теплообменивающихся сред. Эти аппараты конструктивно предельно просты и состоят из двух труб большего и меньшего диаметра, расположенных концентрически. Такие теплообменники широко применяются в практике благодаря следующим преимуществам перед другими устройствами: 1) позволяют осуществить полный противоток; 2) допускают работу при больших скоростях движения по 3) устойчивы при работе с агрессивными и загрязненными Теплообменники типа «труба в. трубе» применяются обычно в составе установок подготовки нефти небольшой мощности — до 3 млн. т нефти в год. Наибольшее распространение получили кожухотрубчатые теплообменники. Существуют кожухотрубчатые теплообменники жесткотрубного типа и с плавающей головкой. 1. Теплообменники кожухотрубчатые жесткого типа, выполняемые в вертикальном и горизонтальном, одноходовом или многоходовом вариантах. Особенность таких теплообменников — приваренные к корпусу аппарата трубные 2. Теплообменники кожухотрубчатые жесткого типа с линзовым компенсатором, отличающиеся от предыдущих тем, что на корпусе монтируется линзовый компенсатор (иногда два и три в зависимости от температурных удлинений). Линзовые компенсаторы устанавливают при высоких термических напряжениях трубок. Теплообменники с линзовым компенсатором ограничены по давлению. 3. Основными теплообменными аппаратами в установках подготовки нефти являются теплообменники с плавающей головкой. Они используются для подогрева сырой нефти за счет теплоты отходящей подготовленной нефти, а также в качестве водяных конденсаторов-холодильников и подогревателей нефти перед ректификационными колоннами на установках стабилизации нефти. Благо даря, подвижной решетке (иначе она называется плавающей головкой) в корпусе исключены температурные напряжения. Кроме того, трубную решетку вместе с пучком в, любое время можно извлечь из корпуса или заменить при износе. Возможна также замена отдельных трубок пучка. На установках подготовки нефти применяются теплообменники с плавающей головкой, имеющие поверхность теплообмена 300—900 м2 и длину трубок 6 и 9 м. Коэффициент теплопередачи в этих аппаратах равен 400—600 кВт/(м2*ч* °С). Для охлаждения нефти и конденсации паров легких углеводородов используется сырая нефть, поступающая с промыслов, а также вода. Качество воды при этом, как правило, невысокое, в ней содержатся посторонние примеси, она достаточно минерализована. Поэтому в трубках теплообменников отлагаются накипь и органические осадки, трубки подвержены коррозии. Эти недостатки полностью устраняются при использовании аппаратов воздушного охлаждения. Строящиеся и проектируемые в настоящее время установки стабилизации нефти оснащаются в основном конденсаторами и холодильниками воздушного охлаждения.
Компрессоры При однотрубных системах сбора нефти и газа отделение таза осуществляется на ЦПС. Во многих случаях на ЦПС строит установки по сепарации и подготовке нефти на одной площадке с установкой подготовки газа. При этом основные компрессорные мощности обычно располагаются на установках подготовки газа. На прием этих компрессоров под собственным давлением 0,3—0,5 МПа поступает газ первой ступени сепарации. Газы второй и третьей ступеней при давлениях соответственно 0,2—0,3 МПа и 0,1—0,2 МПа при близком расположении установки подготовки газа можно также под собственным давлением транспортировать на прием компрессоров установки подготовки газа. Если давления второй и третьей ступеней сепарации недостаточно для транспортирования газа до компрессорной станции установки подготовки газа, то строят компрессорную линию непосредственно у пункта сепарации, и газы второй и третьей ступеней при помощи компрессоров можно закачивать и газопровод первой ступени сепарации или по самостоятельному газопроводу транспортировать до установки подготовки газа. Для жирных газов концевой или горячей ступеней сепарации необходима установка компрессоров непосредственно у сепараторов. В некоторых случаях с этих ступеней сепарации газ отбирают под вакуумом, и требуется установка у сепараторов вакуум-компрессоров. На многих нефтяных месторождениях возникает необходимость в компрессорных станциях для компримирования газа первой ступени сепарации и транспортирования его до ближайшего газобензинового завода или другого потребителя. На некоторых месторождениях компрессорные станции высокого давления необходимы в связи с внедрением газлифтной добычи нефти. Наибольшее распространение на нефтяных месторождениях получили компрессоры следующих типов: газомоторные, турбокомпрессоры и ротационные с электроприводом. В стадии широкого внедрения находятся винтовые компрессоры. Газомоторными называются компрессоры поршневого типа, соединенные в один агрегат с двигателем (газомотором), использующим в качестве топлива перекачиваемый газ. Основными узлами газомоторного компрессора являются блок силовых цилиндров с поршнем, шатуны двигателя и компрессора, крейцкопф, поршень компрессора со штоком, цилиндр компрессора, приемные и выкидные клапаны. Коленчатый вал и картер являются общими для двигателя и компрессора. Для пуска газомоторных компрессоров используют сжатый воздух, который дает первоначальный толчок поршню двигателя. Вращательное движение коленчатого вала преобразуется кривошипно-шатунным механизмом и крейцкопфом в возвратно-поступательное движение штока и поршня. Газ поступает в полость рабочего цилиндра компрессора через приемные клапаны, установленные в верхней части цилиндра, сжатый газ выходит через выкидные клапаны, расположенные внизу. Подачу газомоторных компрессоров регулируют вручную Из газомоторных компрессоров на нефтяных месторождениях широко применяются компрессоры типа 8ГК, 10ГК и ГМ-8. Последний является автономной и моноблочной машиной, и в настоящее время им укомплектовываются блочные компрессорные станции типа КС-550. Все эти компрессоры выпускаются в основном с четырьмя рабочими цилиндрами, реже с тремя или пятью, с различным сочетанием числа цилиндров на первой, второй и третьей ступенях в зависимости от условий. В табл. 6 приведены основные технические данные газомоторных компрессоров. Если газ перекачивают на небольшие расстояния, т. е. не требуется высокого давления, то применяются турбокомпрессоры или ротационные компрессоры с приводом от электродвигателя. Турбокомпрессор — это центробежная машина с частотой вращения до 14 000 мин-1. Число оборотов турбокомпрессора увеличивается при помощи редуктора, в то время как ротационные машины могут непосредственно подсоединяться к низкооборотному двигателю. Ротационный компрессор и отличие от турбокомпрессора работает по принципу поршневых машин, но отличается от них тем, что сжатие газа происходит не при возвратно-поступательном движении поршня, а в результате вращательного движения цилиндрического поршня, называемого ротором. Вращающийся ротор имеет выдвижные пластинки, которые скользят по внутренней поверхности цилиндрического корпуса, называемого статором. Ротор расположен эксцентрично по отношению к статору, так что между ними образуется серповидное пространство. При вращении ротора пластинки под действием центробежной силы выдвигаются по своим пазам до соприкосновения с внутренней поверхностью статора. Объем, заключенный между двумя соседними пластинками, при вдвинутых в ротор пластинках равен нулю, а при выдвинутых — максимальному значению. Таким образом, между пластинками образуются камеры с изменяющимися при вращении объемами. Камеры во время сообщения с приемным патрубком 6 постепенно увеличиваются в объеме и заполняются газом. Достигнув максимума своего объема, камеры перекрываются цилиндрической поверхностью статора, и при дальнейшем повороте ротора их объем начинает постепенно уменьшаться, а газ, находящийся в камерах,— сжиматься. По достижении минимума объема камер сжатый газ, находящийся в них, поступает в выкидной патрубок. Все это обеспечивает большую плавность подачи газа в ротационных компрессорах по сравнению с поршневыми. Ротационные компрессоры — низкооборотные (до 500 мин-1). На нефтяных месторождениях применяются в основном турбокомпрессоры ГТК-7/5 и ротационные компрессоры РСК-50/7. К преимуществам турбокомпрессоров и ротационных компрессоров перед поршневыми относятся малые габариты и масса, простота конструкции, уравновешенность машины, прямоточность процесса и равномерность подачи газа, к недостаткам — повышенные требования к точности изготовления и эксплуатации. В последнее время для компримирования газов концевых ступеней сепарации или горячей вакуумной сепарации все большее применение получают винтовые компрессоры (в основном используются компрессоры 7ВКГ-30/7 и 7ВКХ-50/7). По принципу действия они относятся к объемным (поршневым) машинам, позволяющим перекачивать газожидкостные смеси, т. е. газ с некоторым содержанием жидкой фазы. В винтовом компрессоре подача газа осуществляется вращающимися ведущим и ведомым винтами, которые находятся в зацеплении друг с другом и заключены в обойму корпуса машины. В компрессорах 7ВК.Г сжатый газ охлаждается путем принудительного впрыскивания масла или нефти в рабочую полость компрессора в процессе сжатия. Компримируемый газ и нефть (масло) движутся поступательно, и равномерное вращение винтов обеспечивает непрерывную подачу газа и нефти без завихрений и пульсаций. Помимо охлаждения газа впрыскиваемая в рабочую полость нефть (масло) смазывает подшипники качения и шестерни связи. На базе компрессора 7ВКГ разработаны блочные автоматизированные компрессорные станции для сбора и транспортирования газа концевых ступеней и горячевакуумной сепарации. В комплект поставки входят элементы системы автоматики: щит дистанционного управления, реле давлении и др. В целом компрессорная установка является автономной и транспортабельной. Обслуживающему персоналу, работающему на установках подготовки нефти, приходится иметь дело также с воздушными компрессорами. Воздушные компрессоры применяются на объектах подготовки нефти в качестве генераторов сжатого воздуха, необходимого для управления работой приборов и средств автоматики, регулирующих технологические параметры в процессах сепарации, обезвоживания, обессоливания и стабилизации нефти.
Промысловые резервуары Для сбора и хранения нефти в нефтедобывающей промышленности применяются резервуары. Они используются для хранения как «сырой» нефти, т. е. обводненной нефти, поступающей с промыслов, так и нефти подготовленной, т. е. обезвоженной и обессоленной, так называемой товарной нефти. Резервуары бывают стальные и железобетонные. Резервуар состоит из плоского днища, цилиндрического корпуса и покрытия (крыши). Днище р е з е р в у а р а монтируется на специальных фундаментах, состоящих из трех слоев: грунтовой подсыпки, песчаной подушки и гидрофобного слоя, предотвращающего поступление вод к днищу резервуара и затрудняющего воздухообмен под днищем. Гидрофобный слой состоит из песка или песчаного грунта, пропитанного битумом, гудроном или вязкой нефтью. Основное назначение гидрофобного слоя – предотвращение коррозионного разрушения днищ резервуаров. Толщина гидрофобного слоя составляет 8-10 см, песчаной подушки – 30 см. слой уплотняют катком или вибратором. Днище укладывают на основание или горизонтально (для резервуаров вместимостью до 1000 м3), либо с уклоном 1:100 от центра к стенке. Минимальная толщина листов центральной части 4 мм. Для резервуаров вместимостью от 5 до 20 тыс.м3 толщина днища составляет 5 мм, а для резервуаров 20 тыс.м3 и более – 6 мм. Окрайки днищ резервуаров вместимостью до 5000 м3 сворачивают на машиностроительном заводе в один рулон вместе с центральной стойкой. Толщина окрайки днища 4 мм (для резервуаров вместимостью 1000 м3) либо на 2—3 мм больше толщины листов центральной части (для резервуаров вместимостью 5000 м3). Для резервуаров вместимостью более 5000 м3 окрайки изготовляют сегментными из отдельных -заготовок толщиной не менее 8 мм. Толщину днища определяют, руководствуясь предполагаемой скоростью коррозии и прочностью конструкции узла сопряжения днища с корпусом. Толщина днища малых резервуаров 4—5 мм, а для резервуаров диаметром более 15 м листы днища имеют толщину 6—8 мм и более (0,8—1 от толщины листов нижнего пояса). Листы днища сваривают встык и внахлестку со сплошным проваром. К герметичности сварных соединений днища предъявляются особые требования, поскольку в процессе эксплуатации они недоступны осмотру. Покрытие резервуара служит для восприятия избыточного внутреннего давления и вакуума в резервуаре, возникающих при его эксплуатации, а также для предотвращения попадания атмосферных осадков (дождя и снега) внутрь резервуара. Конструктивно покрытие, рассчитанное на 2 кПа, приваривают к кольцевому угольнику сплошным наружным и прерывистым внутренним швом, а к несущим элементам покрытия (стропилам) — прихватками. При давлении 0,2 кПа покрытие приваривают только наружным сплошным швом. Конструкция стационарной крыши и крепление ее к верхнему поясу по расчету должны обеспечивать отрыв крыши без повреждения стенки в случае взрыва и газовом пространстве. Уклон стационарной крыши резервуара емкостью до 5000 м3 должен быть не менее 1 : 20 и не более 1 : 8. Покрытие опирается, как правило, на стенки корпуса, а в резервуарах большой вместимости — на дополнительную стойку в центре резервуара. Корпус резервуара сваривают из отдельных поясов. Расположение поясов бывает следующее: встык (при изготовлении резервуаров из рулонных заготовок, свариваемых под слоем флюса в заводских условиях), телескопическое (при сооружении резервуаров полистовым методом в отдельных районах, в которые по транспортным условиям невозможно доставить крупногабаритные рулонные заготовки), ступенчатое (применяется редко в резервуарах специальной конструкции). Вертикальные швы корпуса, воспринимающие гидростатические нагрузки, должны быть особо прочными. Их выполняют встык и проваривают с обеих сторон. Тонкие листы резервуаров малой вместимости сваривают внахлестку, при этом наружные швы выполняют сплошными, внутренние — сплошными или прерывистыми. Величина нахлестки должна быть не менее 86 (б — толщина листа). Толщина листов корпуса резервуара изменяется от 4 до 14 мм в зависимости от типоразмера резервуаров. Оборудование резервуаров Оборудование резервуаров предназначено для обеспечения их правильной и безопасной эксплуатации и, в частности, для проведения операций по приему, хранению и отпуску нефтепродуктов, замеру уровня жидкости, отбору проб, зачистке и ремонту резервуара, удалению подтоварной воды, поддержанию в резервуаре требуемого давления и вакуума, предотвращению аварий от ударов молнии, от накопления зарядов статического электричества. Кроме того, резервуары укомплектовывают специальными устройствами для борьбы с пожарами. Для подъема на крышу резервуар оборудуется лестницей. На крыше резервуара расположены замерный люк, дыхательные и предохранительные клапаны, огневые предохранители и световые люки. Замерный люк предназначен для измерения уровня нефтепродукта и подтоварной воды в резервуаре, а также для отбора проб пробоотборником. Он состоит из крышки с рычажной педалью, корпуса, маховичка и нажимного откидного болта. Герметичность люка обеспечивается прокладкой. В целях повышения точности измерения уровня жидкости в конструкции люка предусмотрено направляющее устройство для спуска лота, закрепленного на металлической ленте рулетки. Чтобы исключить искрение при движении ленты, устройство изготовляют из цветного клапана. Дыхательные клапаны устанавливают на резервуарах над огневыми предохранителями для поддержания в газовом пространстве расчетного давления над вакуумом. Они предназначены для сокращения потерь нефтепродуктов от испарения, что достигается ограничением выхода газов при закачивании и изменением температуры, давления и упругости паров нефтепродуктов в резервуаре в течение суток. Дыхательные клапаны рассчитаны на рабочее давление до 2 кПа и вакуум 0,25 кПа. Дыхательный клапан типа ДК состоит из корпуса, внутри которого находятся седла и тарелки, образующие два затвора: один для работы на давление (верхний), а другой для работы на вакуум (нижний). При работе клапана тарелки перемещается по направляющим штокам. При повышении давления внутри резервуара клапан поднимается и лишний газ выходит в атмосферу, а при понижении давления внутри резервуара открывается клапан и в резервуар поступает воздух. Клапаны могут быть отрегулированы на определенное давление и поднимутся только в том случае, когда давление или разрежение внутри резервуара достигнет определенной величины. Над клапанами имеются съемные крышки, через которые вынимают клапаны для осмотра и ремонта. В целях обеспечения работоспособности клапанов в зимнее время разработаны и широко применяются непримерзающие мембранные дыхательные клапаны типа НДКМ, обладающие высокой пропускной способностью. В них для разобщения пространства над и под тарелкой служат мембраны. Набор сменных дисков в конструкции клапана позволяет изменять пределы срабатывания при вакууме и избыточном давлении в резервуаре. Малое гидравлическое сопротивление клапана и большая высота подъема тарелки над седлом обусловили значительное увеличение его пропускной способности. Клапаны предохранительные гидравлические предназначены для регулирования давления в газовом пространстве резервуара при неисправности, дыхательного клапана, а также в случае, если проходное сечение дыхательного клапана окажется недостаточным для быстрого пропуска газа или воздуха. Предохранительные клапаны устанавливают параллельно с дыхательными (механическими). Предохранительные клапаны рассчитаны на избыточное давление 2,5 кПа и вакуум 0,33 кПа. Их устанавливают на крыше резервуара над огневым предохранителем. Клапан имеет фланец, центральный патрубок, корпус, снабженный кольцевым карманом. Крышка клапана с приваренной к ней внутренней перегородкой опирается на болты и имеет сетку. В кольцевом пространстве между патрубком и корпусом создают гидравлический затвор, для чего используют соляровое или другое масло, имеющее плотность 0,86—0,88 г/см3. Масло заливают в корпус клапана через воронку. Наличие масла контролируется щупом. Уровень залитого масла должен совпадать с риской на щупе. Клапаны работают по принципу вытеснения жидкости гидрозатвора из внутреннего кольцевого пространства во внешнее при повышении давления внутри резервуара. После понижения уровня до нижнего обреза колпака газовоздушная смесь барботирует через жидкость и выходит в атмосферу. Огневые предохранители служат для предохранения от вспышки или взрыва паров нефтепродуктов внутри резервуара в. Случае проникновения огня, искр через дыхательный или предохранительный клапан. Принцип действия огневых предохранителей основан на том, что пламя при взрыве газовых смесей не проникает через отверстия с малым поперечным сечением. В качестве огнепреградительного материала применяют алюминиевую фольгу (0,3—0,5 мм), металлические сетки, гофрированные листы и т. п. Кроме оборудования, расположенного на крыше, резервуар имеет следующие устройства. Измерители уровня жидкости в резервуаре типа УДУ предназначены для оперативного контроля за заполнением и опорожнением резервуара. Указатели УДУ-5 предназначены для измерения уровня нефти и нефтепродуктов. К указателям УДУ-5 подсоединяют датчики для передачи показаний на диспетчерский пункт. Указатели выпускают в двух модификациях: 1) УДУ-5М — с местным отсчетом уровня и 2) УДУ-5П с дистанционной потенциометрическои приставкой. Принцип работы прибора основан на следящем действии поплавка, плавающего на поверхности- жидкости и перемещающегося вместе с ее уровнем. Поплавок, выполненный из нержавеющей стали, подвешен на перфорированной ленте и при своем движении скользит вдоль направляющих струн. Струны поддерживаются в натянутом состоянии натяжными устройствами. Мерная лента по роликам проходит через гидрозатвор и вступает в зацепление с мерным шкивом показывающего прибора. Отсчетный механизм представляет собой обыкновенный десятичный счетчик с тремя цифровыми барабанами и одним диском. Цена деления цифрового диска 1 мм, предел измерения до 12 м. В узел гидрозатвора входят три угловых ролика, соединенных защитными трубами и образующих колено, которое на 200—300 мм заливается незамерзающей жидкостью. Жидкость и колене образует затвор, который не позволяет парам продукта из резервуара проникать в полость показывающего прибора при избыточном давлении в резервуаре до 2 кПа. Для дистанционной передачи показании и сигнализации крайних положений уровня в указателях уровня УДУ-5П к специальному фланцу, расположенному на корпусе показывающего прибора, крепится дистанционная потенциометрическая приставка, входящая с пультом контроля и сигнализации ПКС-2 в комплект дистанционного указателя уровня для резервуаров. Исполнение приставки взрывозащищенное, погрешность измерения при местном отсчете ±5 мм, при дистанционной передаче показаний ±15 мм. Пробоотборник типа ПСР-4 представляет собой герметизированное устройство, предназначенное для полуавтоматического отбора средних проб нефтепродуктов из вертикальных резервуаров, определения их качества и измерения плотности. Прибор включает верхний люк, пробоотборную колонку с системой клапанов и сливное устройство пробы в объеме 150 см3 . В конструкции пробоотборника предусмотрено устройство для постоянного разобщения прибора с нефтепродуктами, хранящимися в резервуаре, что исключает возможность попадания вовнутрь жидкого нефтепродукта из резервуара при случайном открытии клапанов в узле отбора пробы. Верхний люк пробоотборника расположен' на крыше резервуара. Он предназначен для закрепления пробоотборной колонки и сообщения ее с газовым пространством резервуара. Пробоотборная колонка с системой клапанов размещена внутри резервуара. Узел слива пробы, в котором осуществляется управление операциями отбора и слива, смонтирован на отдельной панели и размещен на наружной стенке резервуара в его нижней части. Для предохранения от атмосферных осадков, пыли и механических повреждений узел слива имеет защитный кожух. Для успешного использования пробоотборника давление в резервуаре не должно превышать 0,3 кПа, а максимальная высоте резервуара — 12 м. Пробоотборные системы типа ПОР работают следующим образом. Проба отбирается и отделяется от остальной массы нефтепродукта вертикальной пробоотборной колонкой, собраний из отдельных трубок из нержавеющей стали. Колонка включает две пли три клапанные секции, соединительные грубы и концевую трубу с прокладками. Число секции и соединительных труб зависит от высоты резервуара. Пробоотборная колонка присоединяется к верхнему люку и узлу слива пробы. Воздушные полости клапанных секций соединены воздушной трубкой между собой полости и с насосом узла слипа пробы. Пробоотборник ПСР-5 в отличие от ПСР-4 оборудован пневмокамерой, позволяющей выталкивать пробу вверх при помощи насоса. Панель управления отбором и сливом пробы из резервуара расположена на крышке люка. Пробоотборник ПСР-6 конструктивно аналогичен ПСР-5, однако в нем .учтены особенности вязких нефтепродуктов: высокая вязкость, вызывающая необходимость подогрева нефтепродукта до 60—80 °С для увеличения его текучести, и слабая коррозионная активность, позволяющая использовать для изготовления пробоотборника углеродистую сталь вместо нержавеющей, применяемой в ПСР-5 П е н о с л и в н ы е камеры предназначены для подачи пены в резервуар с горящим нефтепродуктом. Для разобщения газового пространства с атмосферой устанавливают мембрану, которая разрушается при подаче пены. Мембраны делают из целлулоида и тонкого картона, пропитанного олифой. Для резервуаров большой единичной вместимости применяют установки типа ГВПС-600 и ГВПС-2000. Такая установка скомпонована из пеногенератора высокократной пены и пенной камеры большой производительности. Важный элемент конструкции пенокамеры — герметизирующая крышка, предотвращающая потери нефтепродуктов от испарения в окружающую среду. Герметичное крепление крышки к корпусу пенокамеры выполняется стяжками, снабженными замками, состоящими из двух частей, спаянных легкоплавким сплавом (температура плавления сплава не более 120СС). Замки стяжек при повышении температуры внутри резервуара расплавляются, и герметизирующая крышка под действием собственного веса падает, освобождая проход пены к горящему нефтепродукту, Установку ГВПС-2000 обслуживают с металлической площадки, сооружаемой со стационарными вертикальными стремянками. Сама установка смонтирована на верхнем поясе резервуара; она обеспечивает равномерную подачу пены на поверхность жидкого нефтепродукта. Сифонный кран типа СК предназначен для спуска из резервуара отстоявшейся подтоварной воды. Кран представляет собой трубу с сальником, пропущенную через стенку корпуса резервуара. Снаружи труба снабжена, сальниковым муфтовым краном. Сифонные краны устанавливают в первом X л опушка предназначена для предотвращения утечек нефтепродуктов из резервуара при повреждении трубопроводов или неисправностях задвижек. Ее устанавливают вну три резервуара на конце приемно-раздаточного патрубка. Хлопушка состоит из корпуса и крышки, связанной с системой управления тросом. При сливо-наливных операциях хлопушку поднимают при помощи механизма бокового управления. В случае неисправности механизма управления хлопушку поднимают при помощи запасного троса. Плотность прилегания крышки хлопушки к корпусу обеспечивается полимерным покрытием затвора. Преимущества полимерных покрытий состоят прежде всего в том, что они более стойки к коррозии и для обеспечения герметичности требуют меньшего давления. В зависимости от размеров хлопушек применяются механизмы управления: в виде барабана, вращающегося на валу и с упором на корпус сальника —для хлопушек типа Х-80, Х-100, Х-150, Х-200 и в виде барабана на валу, имеющего самостоятельное дополнительное упорное устройство,— для хлопушек типа Х-250, Х-300, Х-350; механизм управления хлопушкой смонтирован над: приемо-раздаточным патрубком. Люки-лазы размещают в первом поясе стенки резервуара. Через них рабочие проникают в резервуар при ремонте. Люки-лазы используют также для очистки резервуара от грязи и твердых отложений и для вентиляции резервуара, поэтому их располагают диаметрально противоположно верхним световым люкам. Подъемная труба при помощи шарнира устанавливается на приемо-раздаточном трубопроводе резервуара, предназначенного для мазутов и масел. Она служит для отбора нефтепродукта из верхних слоев, где он наиболее чист и имеет наибольшую температуру. Труба поднимается тросом ручной лебедки, установленной снаружи на корпусе резервуара. От лебедки к подъемной трубе трос направляется роликом, смонтированным на крыше резервуара. Опускание подъемной трубы происходит под действием собственного веса. Поднятая выше уровня жидкости в резервуаре подъемная труба предотвращает потери нефтепродуктов в случае повреждения задвижки приемо-раздаточного трубопровода. Борьба с потерями нефти Основные потери нефти и нефтепродуктов в нефтяной промышленности складываются из потерь от испарения в резервуарах, потерь от уноса газом капельной нефти из сепараторов, потери нефти при закачке сточных промысловых вод в пласты и потери от утечек. Большинство нефтей, добываемых на промыслах СССР, относятся к легким, содержащим большие количества легких низкокипящих фракций и растворенного газа. При сборе, транспортировании и хранении этих нефтей в промысловых условиях растворенные в них газы часто полностью теряются; кроме того, значительны потери легких нефтяных фракций, так как при испарении таких компонентов, как метан, этан и частично пропан, из нефти улетучиваются и более тяжелые углеводороды (бутаны, пентаны и высшие). Необходимо отметить, что чем продолжительнее периоды транспортирования и хранения нефти и чем чаще она контактирует с атмосферой, тем больше потери углеводородов. Этих потерь можно избежать при полной герметизации пути движения нефти от скважин до нефтеперерабатывающих заводов. Как правило, легкие фракции нефти теряются в промысловых мерниках, резервуарах с неисправными крышами или открытыми люками. Существующие резервуары рассчитаны на перепад в 2000 Па и оборудуются дыхательными клапанами. При наличии дыхательных клапанов на резервуарах потери будут лишь при заполнении нефтью, которая вытеснит объем газовоздушной смеси над ней, при так называемых больших дыханиях резервуаров. Потери нефти из резервуара прямо пропорциональны упругости паров нефти, находящейся в резервуаре, и обратно пропорциональны техническому уровню герметизации самих резервуаров. Следовательно, чем больше число перевалок нефти по пути ее движения (чем больше операций по наливу), тем больше будут потери от испарения. Поэтому для снижения потерь легких фракций необходимо так организовать движение нефти, чтобы число перевалок ее в «атмосферных» резервуарах было минимальным при максимальной их герметизации. Данные исследований показывают, что более половины (по массе) теряемых углеводородов составляют этан и пропан -бутановые фракции, являющиеся исходным сырьем для производства синтетического каучука, спиртов, эфиров, уксусной кислоты, полипропилена, полиэтилена, синтетических волокон и множества других продуктов. Исследования состава потерь от испарения нефти показали, что эти потери на пути от промысла до нефтеперерабатывающего завода существенно уменьшают ресурсы нефтехимического сырья. Ликвидация потерь нефти и газа в герметизированных однотрубных системах сбора обеспечивается применением только герметичного оборудования по всей технологической цепочке этой системы и жесткой технологической связью системы сбора с установками по подготовке нефти и газа (подача продукции скважин непосредственно на установку подготовки нефти без использования сырьевых резервуаров). В связи с внедрением герметизированных однотрубных систем сбора нефти и газа обычно общее давление в системе возрастает и соответственно увеличивается и давление на устье нефтяных скважин. Поэтому особое внимание должно быть уделено герметичности сальников полированных штоков на скважинах, оборудованных штанговыми насосами. С целью сокращения потерь в сальниках в настоящее время разработаны различные сальниковые уплотнения с применением новых материалов, которые надежно, без пропусков работают при давлениях до 4 МПа. На фонтанных скважинах и скважинах, оборудованных погружными электроцентробежными насосами, широко используются при добыче парафинистых нефтей футерованные насосно-компрессорные трубы, применение которых практически исключает операции по спуску и подъему скребков и соответственно пропуски нефти и газа через сальники лубрикаторов. Потери нефти из-за несовершенства сепарационного оборудования в основном связаны с тем, что в сепараторах не всегда удается снизить унос газа вместе с нефтью до минимума, в результате чего часть газа вместе с нефтью может поступать в резервуары. При выделении газа из нефти в резервуарах обычно вместе с газом уносятся и более тяжелые углеводороды, что увеличивает потерн нефти. Усовершенствование сепараторов с целью сведения к минимуму уноса газа вместе с нефтью обычно проводится путем улучшении внутренних устройств, способствующих наиболее полному выделению газа из нефти, а также за счет выбора соответствующего объема сепаратора, чтобы время пребывания нефти в нем было достаточным для отделения максимального количества газа. Наиболее серьезный источник потерь нефти — использование резервуаров в качестве отстойников для отделения воды и хранения нефти. Потери нефти при этом возрастают прямо пропорционально температуре подогреваемой нефтяной эмульсии. С целью ликвидации потерь нефти при ее подготовке во всех При сепарации под вакуумом давление паров нефти становится ниже атмосферного и потери нефти в резервуаре, работающем под атмосферным давлением, будут сведены к минимуму. Поэтому внедрение горячей сепарации нефти под вакуумом перед ее поступлением в товарные резервуары — одно из действенных мероприятий по сокращению потерь на нефтяных месторождениях. При хранении нефти в резервуарах товарных парков возможны потери наиболее ценных фракций нефти от больших и малых дыханий резервуаров. Большими дыханиями резервуаров называют процессы вытеснения паров нефти при заполнении резервуара и впуска воздуха при его опорожнении. Малые дыхания в резервуарах возникают в результате изменения суточной температуры и барометрического давления наружного воздуха. Днем при нагревании резервуара давление паров нефти в нем может превысить расчетное давление дыхательных клапанов и часть паров нефти через дыхательный клапан выйдет в атмосферу. В ночное же время, когда температура окружающего воздуха понизится, часть паров нефти в газовом пространстве резервуара сконденсируется, давление упадет и при достижении расчетного вакуума наружный воздух начнет поступать в газовое пространство резервуара. Уменьшение потерь от малых дыханий может быть достигнуто сокращением суточных колебаний температуры в газовом пространстве резервуара в результате применения предохранительной окраски резервуаров в светлые тона и использованием железобетонных резервуаров. Наиболее экономичной считается окраска резервуара в белый цвет. Белизна краски зависит от вида красителя. Наилучшим красителем считается двуокись титана. Однако в работе резервуарных парков трудно добиться одновременного заполнения одних резервуаров и опорожнения других. В этих случаях в газоуравнительную систему подключают резервуары-компенсаторы или резервуары с подъемными (плавающими) крышами. Для уменьшения испарения нефти в резервуарах за рубежом особенно широкое распространение получили экраны из пластмассовых полых шариков и пластмассовых пленок. Применение экрана из пластмассовых шариков позволяет уменьшить испарение нефти в 5—6 раз. Наиболее эффективным методом борьбы с потерями нефти от больших дыханий является отказ от использования резервуаров для приемо-сдаточных операций и переход к системам безрезервуарной откачки нефти в нефтепровод. При этом резервуары могут лишь подключаться к насосу в качестве буферных емкостей, в которых уровень нефти колеблется в незначительных пределах. Таким образом большие дыхания резервуара сводятся к минимуму и соответственно снижаются потери нефти. Большое значение в сокращении потерь нефти в резервуарах имеет поддержание в исправном состоянии резервуарного оборудования, внедрение непримерзающих дыхательных клапанов, дисков-отражателей. В настоящее время ведутся работы по испытанию понтонов из синтетических материалов, которые дают возможность резко сократить потери нефти при больших дыханиях резервуаров. Наиболее эффективным мероприятием по ликвидации потерь легких фракций нефти от испарения является абсолютная герметизация пути движения нефти по трубопроводу, минуя трапные установки, сборные пункты и товарные парки. Если известны основные источники потерь в промысловом хозяйстве (негерметизированные мерники, технически неисправные атмосферные резервуары), борьба с ними сводится к уменьшению мест, в которых происходят эти потери (сокращение числа резервуарных парков, ликвидация мерников), а также к технической реконструкции промысловых сооружений, заключающейся: а) в применении резервуаров повышенного давления с плавающими крышами, устраняющими воздух из газового пространства резервуара; б) в оснащении резервуаров герметизированными крышами с дыхательными клапанами; в) в применении специального оборудования для улавливания продуктов испарения с извлечением тяжелых фракций из них; г) в покрытии поверхности нефти в резервуарах изолирующими от атмосферы слоями жидкости, пены, плавающих шариков. За последние годы в нефтяной промышленности выполнены крупномасштабные работы, направленные на снижение потерь нефти. Это позволило практически исключить источники потерь на участке скважина — промысловый резервуарный парк. Наиболее сложно ликвидировать основной источник потерь нефти — испарение из резервуаров. Для решения данной проблемы разработана и в промышленных условиях апробирована технология улавливания легких фракций из резервуаров, предусматривающая отбор избыточного количества легких фракций из газового пространства резервуаров газодувками (компрессорами), отделение конденсата, подачу газа в напорный газопровод. Нефть после концевой ступени сепарации поступает в резервуары. Для обеспечения отбора свободного газа, выделяющегося в приемных нефтепроводах, перед резервуарами устанавливаются газоотделители. Резервуары оборудуются газоуравнительной обвязкой, при помощи которой легкие фракции перераспределяются между ними, а излишек поступает на прием газодувки (компрессора) и далее в напорный газопровод. Подготовка газа к транспортированию осуществляется применительно к конкретным условиям объекта (сепарация, смещение с газом, имеющим в своем составе меньшее количество тяжелых углеводородов, охлаждение, осушка, подача в нефтяную зону газонефтяных сепараторов и т. д). Для предотвращения образования вакуума и исключения попадания воздуха на резервуарах установлены сигнализаторы давления, подающие электрический сигнал на отключение компрессора при достижении минимально допустимого давления. Дублирующий сигнал на отключение компрессора поступает от сигнализатора давления, установленного на конденсатосборнике. Для этой же цели устанавливаются сигнализаторы давления, подающие сигналы на открытие клапанов подпитки и рециркуляции газа. Согласование подачи компрессоров с расходом газа из резервуаров осуществляется при помощи системы регулирования давления в конденсатосборнике, газопроводах и резервуарах, включающей сигнализаторы давления, регулирующие клапаны, газопроводы и запорную арматуру. Потери от утечек относятся к категории чисто количественных потерь. Утечки происходят через неплотности соединений трубопроводов, резервуаров, задвижек, сальников насосов и т. д., при коррозионных разрушениях трубопроводов и резервуаров, при переливах резервуаров и других емкостей. Предотвращение потерь от утечек зависит от своевременного проведения профилактических ремонтов и специальных организационно-технических мероприятий, разрабатываемых в каждом отдельном случае. Жидкостные манометры Жидкостные манометры являются самыми простыми и точными приборами для измерения давления. Они выполняются из стекла. Верхний предел измеряемого давления составляет около 200 кПа. Эта величина определяется прочностью стеклянных трубок, герметичностью соединений стекла с металлом или резиной (соединительными трубками), а также удобством визуального отсчета показаний.
Деформационные манометры Наибольшее распространение и нефтяной промышленности манометров этого вида получили сильфоновые манометры и манометры с трубчатыми пружинами. Сильфонные манометры (сильфоны) представляют собой упругие гофрированные трубки из стали, латуни или фосфористой и бериллиевой бронзы, закрытые с одном стороны. Среда, давление которой измеряется, обычно подводится к коробке с сильфоном и воздействует на его наружную поверхность. Последний, сжимаясь при увеличении давления, перемещает шток, а следовательно, и стрелку прибора или перо если прибор регистрирующий. Сильфонные манометры выпускаются как показывающими, так и самопишущими. Под действием измеряемого давления сильфон с пружиной сжимается, перемещая вверх шток. Верхний конец штока связан передаточным механизмом с держателем пера, которым давление записывается на бумажной диаграмме (картограмме) специальными чернилами. Картограмма приводится во вращение часовым механизмом или синхронным двигателем. Для измерения больших давлений применяются манометры содновитковой и многовитковой трубчатыми пружинами. Одновитковая трубчатая пружина представляет собой полую металлическую трубку овального сечения, изогнутую по дуге и закрытую с одного конца. Второй конец трубчатой (манометрической) пружины впаян в штуцер, соединяющий трубку со средой, давление которой измеряется. Под действием давления трубчатая пружина меняет форму своего сечения, в результате чего ее свободный конец перемещается пропорционально измеряемому давлению. При увеличении давления трубка разгибается. Таким образом, входной величиной трубчатой пружины является измеряемое давление р, выходной величиной -— угол перемещения свободного конца. Увеличение угла поворота стрелки достигается с помощью передаточного механизма. Для измерения давления до 5 МПа трубки изготавливают из латуни или бронзы, а для более высоких давлений — из стали. Для приведения в действие сигнальных устройств (ламп, звонков) применяются электроконтактны манометры (ЭКМ), состоящие из двух передвижных контактов (минимального и максимального), устанавливаемых на требуемые значения давления и замыкаемых стрелкой при достижении соответствующих давлений (рис. 76). В некоторых случаях для измерения высоких давлений применяют электрические манометры. К ним относятся манометры сопротивления, емкостные, пьезоэлектрические и т.д. В электрических манометрах сопротивления используется свойство проводников изменять сопротивление под действием давления. Сопротивление проводника и его изменение при изменении подводимого давления измеряются соответствующим прибором. В емкостных манометрах используется уменьшение или увеличение емкости плоского конденсатора при изменении давления, которое увеличиваем или уменьшает расстояние между обкладками.
Измерение температуры Температура является одним из важнейших параметре определяющих протекание многих технологических процессе Температурными пределами процесса определяется качество получаемых продуктов, давление их паров, плотность и вяз кость жидкостей и паров и т. д. В настоящее время для нахождения температуры используются следующие основные физические явления, происходящие веществах при изменении температуры: 1) изменение линейных размеров и объема жидких и твердых тел; 2) изменение давления жидкостей и газов, заключенных постоянный объем; 3) возникновение и изменение термоэлектродвижущих сил в термоэлементах; 4) изменение активного электрического сопротивления про 5) изменение лучеиспускательной способности нагретых тел. боры для измерения температуры, называемые термометрами. Термометрами расширения называются такие приборы, в которых используется наблюдаемое при изменен температуры изменение объема или линейных размеров к В зависимости от веществ, используемых в приборах, термометры расширения подразделяются на жидкостные и деформационные. Действие жидкостных термометров расширения основано на принципе теплового расширения жидкости, заключенной в стеклянный резервуар малого объема. Действие же механических термометров основано на изменении линейных размеров твердых материалов (металлов и сплавов) при изменении их температуры. В качестве рабочей жидкости для жидкостных термометров применяют ртуть и органические жидкости. Ртутные жидкостные термометры обычно используют для измерения высоких температур (до 750°С), а термометры с органическими жидкостями— для измерения низких температур (спирты до —100°С, толуол до —90°С). Жидкостные стеклянные термометры относятся к местным приборам контроля за температурой. Они изготавливаются прямыми и угловыми под углами 90 и 135°. В производственных условиях ртутные термометры обычно устанавливают в металлической защитной арматуре (стальной трубке с окном для наблюдения за показаниями), что предохраняет термометры от механических повреждений. В технологических процессах с повышенными- температурами широко применяются термоэлектрические термометры, принцип действия которых основан на термоэлектрическом эффекте. Если взять два проводника с разной проводимостью А и В и одни концы их спаять или сварить, а вторые оставить свободными, то при нагревании спая на свободных концах возникнет разность потенциалов ЕАв или термоэлектродвижущая сила (т.э.д.с). Эта разность потенциалов (т.э.д.с.) будет тем выше, чем больше разность температур спая и свободных концов. Образованный таким образом термоэлемент называется термопарой. Чтобы измерить т.э.д.с. в цепи термопары, необходим измерительный прибор, подсоединенный к ее свободным концам (свободным концам термоэлектродов). При измерении температуры термопара как чувствительный элемент помещается в измеряемую среду, причем каждому значению температуры среды будет соответствовать определенная т.э.д.с. термопары. Т.э.д.с. термопары зависит от материала термоэлектродов, из которых изготавливаются термопары. Это, главным образом, металлические сплавы с малым коэффициентом температурного сопротивления. В промышленности широко применяются термопары из благородных и неблагородных металлов. Один термоэлектрод термопары ТПП (платинородий — платина) выполнен из сплава (10% Rh и 90% Rt). второй электрод— из чистой платины. Такая термопара обладает повышенной жаростойкостью и стабильной характеристикой. Она применяется для измерения температур от 200до1300°С при длительном использовании в промышленных условиях и до 1600°С при кратковременных измерениях. Диаметр термоэлектродов 0,5 мм. Термопара. ТХА (хромсль-алюмсль) имеет один термоэлектрод из хромеля (89 % Ni, 9,8 % Сг, 1 % Fe, 0,2 % Мn), а второй из алюмеля (94 % Ni, 2 %А1, 2,5 % Мn, 1 % Si, 0,5 % Fe). Применяется для измерения температуры от —50 до 1000 °С при продолжительных измерениях в промышленных условиях и до 1300 °С при кратковременных измерениях. Диаметр этих термоэлектродов не менее 3,2 мм. Термопара ТХК (хромель-копель) имеет один электрод из хромеля, а второй из копеля (56% Ni, 44% Сг). Применяется для измерения температуры от —50 до 600 °С при продолжительных и до 800 °С при кратковременных измерениях. Диаметр термоэлектродов ТХК не менее 3,2 мм. При измерении температуры в нескольких местах одного и того же объекта или в нескольких различных объектах контроля часто один измерительный прибор работает в. комплекте с несколькими термопарами (рис. 79). В этом случае температура изменяется путем поочередного подключения термопар к измерительному прибору. На принципе использования милливольтметров для измерения температуры разработаны специальные приборы, называемые потенциометрами.
Измерение уровня жидкости В производственных процессах большое значение имеет контроль за уровнем жидкостей в технологических аппаратах, различных емкостях и резервуарах. Измерение уровня в технологических аппаратах позволяет контролировать наличие в них нефти или нефтепродуктов, необходимых для протекания технологических процессов в требуемом направлении. Измерение уровня в аппаратах производится обычно в относительно небольшом диапазоне его изменения, причем высокая точность при измерении не требуется. Hнеобходимо следить лишь, за тем, чтобы уровень не был больше или меньше допустимых значений Уровни жидкости измеряются различными методами, измерения используются различные контрольно-измерительными приборы. При измене уровня жидкости поплавок перемещается вверх или вниз, ось поворачивается в ту или иную сторону на угол, пропорциональный изменению уровня. Поворот оси передается указателю. В камерном уровнемере камера подсоединяется к технологическому аппарату двумя трубками, образуя систему сообщающихся сосудов. Уровень в камере, таким образом, всегда равен уровню жидкости в аппарате. Приборы с поплавками обычно используются как датчики в системах дистанционного контроля, где угол поворота оси преобразуется в пропорциональное давление сжатого воздух». Применяется несколько разновидностей уровнемеров с по плавками легче жидкости, предназначенных или дистанционного измерения уровня в технологических аппаратах. К ним относятся уровнемеры поплавковые камерные (PУПK), уровнемеры поплавковые штуцерные (РУПШ) и уровнемеры поплавковые фланцевые (РУПФ). Они применяются для измерения уровня, изменяющегося от 0 до 400 мм. Уровнемеры с поплавками легче жидкости применяются также для измерения уровня жидкости в резервуарах. Для этой цели предназначены уровнемеры типа УДУ, КОР—ВОЛ (производство ВНР). Учет нефти Учет нефти осуществляется на всем пути ее движения, начиная с замера дебита отдельных скважин и кончая учетом нефти, сдаваемой нефтеперерабатывающим заводам. Нефть в сыром (обводненном) виде замеряется на бригадных и промысловых узлах учета нефти. После обезвоживания и обессоливания нефть уже в так называемом товарном виде учитывается при осуществлении приемо-сдаточных операций между нефтедобывающими предприятиями и управлениями трубопроводного транспорта нефти, а также между управлениями трубопроводного транспорта при перекачке нефти по магистральным нефтепроводам. До недавнего времени основным средством учета нефти являлся резервуар. Приемо-сдаточные пункты учета нефти размещались в основном на нефтепромыслах, где нефть передавалась транспортирующим организациям, и на нефтеперерабатывающих заводах, где нефть принималась от транспортирующих организаций для переработки. На приемо-сдаточных пунктах осуществлялись прием и сдача нефти по количеству и качеству. Нефть предъявляли к приему в калиброванных резервуарах, а качество сдаваемой нефти определялось по отобранным пробам в химических лабораториях. Данный метод учета нефти мог использоваться в отрасли, пока добыча нефти была ограниченной. Впоследствии данный метод учета стал неприемлемым. Для организации учета нефти с использованием резервуаров и химических лабораторий потребовались бы огромные капитальные вложения в их сооружение, кроме того, построить новые резервуары и химические лаборатории за короткий промежуток времени практически невозможно. Необходимо было также повысить достоверность учета нефти. C использованием резервуарного метода очень сложно автоматизировать процесс коммерческого учета нефти. Все отмеченные факторы повлияли на пересмотр систем товарно-учетных операций и перевод их на поточные методы. Были разработаны и серийно освоены производством счетчики-расходомеры нефти на потоке различных конструкций. В нефтяной промышленности наибольшее применение получили тахометрические вихревые и ультразвуковые приборы. Тахометрические приборы, в свою очередь, подразделяются на обычные и турбинные. При объемном методе измерения поток нефти или нефтепродуктов делится механическим способом на отдельные порции, которые подсчитываются. В зависимости от средств разделения потока счетчики подразделяются на несколько типов. Наиболее распространены шестеренчатые и лопастные. В настоящее время счетчики жидкости с овальными шестернями являются основными приборами камерного типа для измерения количества жидкостей, с вязкостью от 0,55-10~6 до 3-10 4 м2/с, температурой от —40 до 120°С и давлением до 6,4 МПа, в трубах диаметром до 100 мм. При указанных условиях погрешность счетчиков составляет ±0,5 %. Лопастные счетчики жидкости используются у нас в стране в основном для трубопроводов диаметром от 100 до 200 мм. Их подвижная система состоит из цилиндра, вращающегося вокруг своей центральной оси, и четырех лопастей, перемещающихся в радиальных прорезях цилиндра. В любом положении одна или две лопасти выдвинуты из цилиндра практически до упора во внутреннюю цилиндрическую поверхность корпуса счетчика. При этом они перекрывают кольцевой проход и, находясь под разностью давлений жидкости, поступающей и уходящей из счетчика, перемещаются вместе с последней, вызывая при этом вращение всей подвижной системы. Лопасти совершают сложное вращательно-поступательное движение, так как при вращении вместе со своим цилиндром они одновременно перемещаются внутри его прорезей. Цилиндр вращающейся системы может быть расположен как концентрично, так и эксцентрично по отношению к внутренней цилиндрической поверхности корпуса счетчика. В первом случае небольшая часть кольцевого пространства между двумя цилиндрическими поверхностями закрывается неподвижной вставкой, препятствующей непосредственному перетеканию жидкости из подводящей трубы в отводящую. При измерении малых расходов объемные счетчики обеспечивают высокую точность и хорошую повторяемость в большом диапазоне измерения расходов. При увеличении вязкости попытается точность объемных счетчиков, так как с увеличением гидравлического сопротивления уменьшаются утечки из камеры. К недостаткам объемных счетчиков можно отнести большие габариты, необходимость тонкой очистки, увеличение погрешности из-за увеличения утечек в результате истирания роторов и корпуса, поэтому на обслуживание измерительных установок требуются большие эксплуатационные затраты. В последние годы значительный прогресс достигнут в области изготовления ультразвуковых расходомеров, действие которых основано на законах распространения звука в жидкости. Ультразвуковые сигналы обычно формируются пьезоэлектрическим генератором, который преобразует входной электрический сигнал в последовательность звуковых импульсов. Основными преимуществами ультразвуковых расходомеров Наибольшее применение в нефтяной промышленности нашли В турбинных счетчиках основным элементом служит вращающаяся в подшипниках турбинка. В идеальных условиях скорость вращения турбинки пропорциональна скорости потока и число оборотов соответствует определенному количеству пропущенного продукта. В реальных условиях, вследствие неравномерности потока, дисбаланса ротора и сжимаемости среды, действительное число оборотов будет отличаться от расчетного, что определяет возникновение погрешности, особенно при малых расходах. Турбинные счетчики имеют ряд преимуществ по сравнению с объемными. Они не требуют тонкой фильтрации, долговечнее и удобнее в эксплуатации, выдерживают более высокое давление, монтаж их на трубопроводе несложен из-за небольших габаритов и массы. Основные недостатки турбинных счетчиков связаны с наличием движущихся частей, приводящих к истиранию подшипников и увеличению погрешности, а также большого перепада давления на счетчике из-за находящегося в потоке ротора, создающего сопротивления потоку. При этом возникают потери напора, которые с учетом фильтрации достигают 0,1 МПа. Несмотря на указанные недостатки, турбинные счетчики выпускаются отечественной промышленностью и многими зарубежными фирмами и в настоящее время являются основным средством учета жидкости на потоке. В нефтяной промышленности широко используются счетчики «Норд»,-выпускаемые заводами Миннефтепрома, «Турбоквант», выпускаемые в ВНР, и некоторые другие. Учет количества добытой, а также товарной нефти ведут в массовых единицах (тоннах) в строгом соответствии с едиными правилами учета. Они сводятся в основном к: 1) измерению объема нефти; 2) измерению ее средней температуры; 3) определению средней плотности нефти и приведению ее к20°С; 4) определению содержания воды, солей и механических примесей. После получения этих данных объем нефти умножают на ее среднюю плотность и получают массу брутто нефти. Из данной массы брутто вычитают массу воды, солей и механических примесей и получают массу нетто. При учете количества нефти в резервуарах объем ее определяют непосредственным замером при помощи замерных лент или уровнемеров. Среднюю температуру нефти получают замером температуры нескольких проб нефти, плотность — ареометром (нефтеденсиметром). Содержание воды, солей и механических примесей определяется лабораторным анализом средней пробы нефти. При сдаче нефти с использованием расходомеров (безрезервуарная сдача) объем нефти определяют по показаниям расходомера, температуру, плотность, содержание воды, солей — соответственно термометром, плотномером, солемером и влагомером, устанавливаемыми на потоке. В случае их отсутствия эти показатели определяются в результате лабораторного анализа средней пробы нефти, отбираемой пробоотборником на потоке. Учет нефти в резервуарах Количество нефти в резервуарах определяют по объему, занимаемому, ею в резервуаре. Для быстрого и точного определения объема нефти в зависимости от ее уровня (высоты взлива) пользуются заранее составленными калибровочными (замерными) таблицами на резервуар каждого типа. Резервуары калибруют различными методами: при помощи мерных сосудов, наливом и сливом заранее отмеренных объемов воды (для малых резервуаров); при помощи объемных счетчиков, замеряющих количество налитой воды при одновременном измерении высоты уровня в калибруемом резервуаре, и замером геометрических размеров резервуара. Метод выбирают с учетом объема резервуаров и необходимой точности. На практике наиболее доступен метод обмера резервуаров стальной рулеткой длиной 20 м. Вертикальные цилиндрические резервуары калибруют измерением высоты и внутреннего диаметра каждого пояса; при этом высоту и толщину листов поясов измеряют, как правило, в трех точках по окружности резервуара, принимая в расчетах средние арифметические их значения. Обмерять рекомендуется при наполнении резервуара жидкостью на 60—80%, поскольку на точность калибровочных таблиц влияет гидростатическое давление. В калибровочные таблицы вводят поправки на неровности днища, на оборудование, расположенное внутри резервуара. Калибровочная таблица является документом, на основании которого учитывается нефть. При определении количества нефти, находящейся в резервуаре, вначале, зная уровень нефти в резервуаре, по калибровочным таблицам находят ее объем. После этого, взяв из резервуара при помощи пробоотборника пробу нефти, определяют в лаборатории ее плотность. Умножая объем нефти на плотность, получают массу нефти. Плотность нефти в резервуаре не является постоянной для всей массы, поэтому приходится определять среднюю плотность всего объема нефти, чтобы найти массу последней. В верхних слоях резервуара температура нефти, как правило, выше, чем в нижних. Содержание воды в нефти возрастает сверху вниз, а следовательно, и плотность также будет изменяться согласно этой закономерности. Для точного определения средней плотности нефти необходимо правильно отбирать среднюю пробу, точно и своевременно измерять температуру и плотность этой пробы. Уровни нефти и подтоварной воды в резервуарах большой вместимости определяются мерной лентой с миллиметровыми делениями и лотом. Лоты служат для натягивания мерных лент и для определения слоя подтоварной воды посредством прикрепляемой к ним водочувствительной ленты. Измерение уровня рулеткой-с лотом осуществляется следующим образом: измеряют базовую сторону (высотный трафарет резервуара) как расстояние по вертикали между днищем или базовым столиком резервуара в точке касания лота рулетки и риской планки замерного люка. Полученный результат сравнивают с известной (паспортной) величиной базовой высоты: они не должны отличаться более чем на допустимое отклонение рулетки (1±4 мм), в случае расхождения необходимо выявить причину и устранить; медленно опускают ленту рулетки с лотом до касания лотом днища или базового столика, не допуская отклонения лота от вертикали, не задевая за внутреннее оборудование и сохраняя спокойное состояние поверхности нефти; поднимают ленту рулетки строго вверх, без смещения в сторону, чтобы избежать искажения липни смачивания на ленте рулетки; отсчет на ленте рулетки производят с точностью до 1 мм немедленно, т. е. после появления смоченной части ленты рулетки над замерным люком. Уровень в каждом резервуаре измеряют не менее двух раз. При получении расхождений в отсчетах более 10 мм измерения повторяют и из трех наиболее близких отсчетов берут среднее. Для контроля за наличием подтоварной воды измеряют ее уровень в резервуарах и других емкостях при помощи водочувствительной ленты или пробоотборника. Затем по градуировочной характеристике резервуаров находят объем подтоварной воды. Для определения объема нефти нужно из объема, отвечающего общему уровню, вычесть объем подтоварной продукции. При приемо-сдаточных операциях наиболее распространен следующий порядок учета нефти: измерение температуры пробы сразу же после ее извлечения из резервуара; определение средней плотности нефти и приведение ее к 20°С; определение массового содержания воды (в %) в отобранной средней пробе аппаратом Дина — Старка. После этих измерений объем обводненной нефти умножают на ее среднюю плотность и получают массу брутто. Из данной массы вычитают массу воды, полученную умножением общей массы «влажной» нефти на массовый процент обводненной нефти, и получают массу нетто, т. е. массу чистой нефти, выраженную в тоннах.
Учет нефти по счетчикам Основным элементом узла учета нефти является турбинный расходомер. Конструктивно турбинный расходомер состоит из корпуса, внутри которого размещается турбинка, насаженная на ось. Турбинка вместе с осью вращаются на подшипниках. Применяются подшипники качения или скольжения. Расходомеры, выполненные на подшипниках качения, предназначены для измерения потоков нефти с вязкостью до 0,3-10-4 м2/с, на подшипниках скольжения— до 3-10-4 м2/с Для повышения надежности и точности работы расходомера в его конструкции предусмотрены обтекатель 5 и направляющие аппараты 7. Снаружи корпуса турбины укреплена фланцевая втулка 6 с резьбовым гнездом для установки магнитоиндукционного датчика, представляющего собой катушку индуктивности с сердечником из магнитного материала. Принцип работы турбинного расходомера основан на преобразовании линейной скорости движения потока жидкости в пропорциональную ей угловую скорость вращения крыльчатки турбинки. При вращении турбинки расходомера лопасти ее, изготовленные из магнитного материала, наводят импульсы электродвижущей силы в магнитоиндукционном датчике, пропорциональные по частоте скорости потока жидкости. Последующим усилением и преобразованием электрических импульсов в электронном блоке вызывается срабатывание шестиразрядного электромеханического счетчика, вынесенного на лицевую панель электронного блока. Несмотря на относительно высокую точность замера расхода турбинными расходомерами, особенно при нагрузках, приближающихся к максимальным, они требуют проверки, так как со временем отклонения в их показаниях могут значительно возрастать (в связи с износом лопаток, подшипников и т. д.). Для проверки турбинных расходомеров непосредственно на месте создана поверочная трубо-поршневая установка (ТПУ). Работа ее основана на сравнении расходов, полученных расходомером на узле учета и ТПУ, при прохождении через них одинаковых количеств жидкости в определенный интервал времени. Конструктивно ТПУ состоит из трубо-поршневого устройства и электронного блока. Трубо-поршневое устройство состоит из калиброванного участка трубы, тройника, расширителя, крана-манипулятора, двух детекторов, шарового разделителя, термометров и образцового манометра. Калиброванный участок трубы установки ограничивается двумя детекторами, которые фиксируют прохождение шаровым разделителем этого участка трубы. Для уменьшения износа шарового разделителя внутренняя поверхность калиброванного участка трубы покрывается эпоксидной смолой. Наружная часть трубо-поршневого устройства теплоизолирована. Принцип работы поверочной ТПУ заключается в следующем. Перед началом поверки для стабилизации температуры и давления налаживают циркуляцию нефти через установку. По известному числу импульсов и времени рассчитывается расход нефти через поверяемый расходомер. Сравнение этих данных в электронном блоке позволяем определить погрешность поверяемого расходомера. Для более точного определения погрешности поверку проводят в несколько приемом. Среднее арифметическое погрешностей принимают зa погрешность данного расходомера до следующей его поверки.
Производственное освещение На нефтегазодобывающих предприятиях освещение должно обеспечивать взрыво- и пожаробезопасность при освещении как помещений, так и наружных установок, где возможно образование опасных по взрыву и пожару смесей. Производственное освещение считается рациональным при: достаточной яркости освещаемой поверхности (глаз без напряжения должен отчётливо различать нужные ему предметы); достаточной равномерности распределения светового потока на рабочих поверхностях; расположении приборов для искусственного освещения таким образом, чтобы глаз не испытывал слепящего действия от чрезмерной яркости как источника света, так и отражающих поверхностей; отсутствии резких и глубоких теней на рабочих поверхностях и на полу в проходах. В производственной обстановке используют три вида освещения: естественное, искусственное и смешанное. Естественное освещение бывает боковым — через окна, верхним — через световые фонари перекрытий и комбинированным - через окна и фонари. Достаточность естественного освещения определяется коэффициентом естественной освещенности. Коэффициент естественной освещенности в любой точке внутри помещения М представляет собой отношение освещенности Ем в этой точке к одновременной освещенности Ен, наружной горизонтальной плоскости, освещенной (равномерно) рассеянным светом небосвода (в %): Величина этого коэффициента нормируется в зависимости от точности выполняемых работ, характеризующейся наименьшими размерами деталей, и системы освещения. Естественное освещение имеет то преимущество, что оно содержит ультрафиолетовые лучи, полезные для человека, однако недостаток его — изменение на протяжении дня, что не обеспечивает достаточную и равномерную освещенность рабочих мест. Искусственное освещение бывает общее пли комбинированное. Для общего освещения применяют мощные высоко подвешенные светильники. Равномерность освещения рабочих помещений достигается таким размещением светильников, при котором не создаются падающие тени от работающего и от расположенного вблизи оборудования. Если по условиям работы тени нельзя устранить, то освещенность в тени должна соответствовать нормам освещенности. Избежать теней можно правильной подвеской и распределением светильников. При общем освещении каждое место работы для смягчения теней должно освещаться несколькими светильниками. При комбинированном освещении в дополнение к общим светильникам на рабочих местах устанавливают местные источники света, располагаемые вблизи освещаемых поверхностей. В производственных помещениях, в которых прекращение освещения может привести к взрыву, пожару или недопустимо длительному расстройству технологического процесса, предусматривают аварийное освещение, которое должно составлять не менее 10% основного. Аварийное освещение делают самостоятельным, не зависимым от основного освещения. В качестве источников света на производстве чаще всего используют лампы накаливания и люминесцентные, характеризующиеся высокой светоотдачей, повышенным к. п. д., меньшей яркостью, невысокой температурой нагрева. В зависимости от распределения силы света в пространстве различают светильники прямого, отраженного и рассеянного света. Их выбирают с учетом условий работы и характеристики помещении или объектов. В производственных помещениях и на территории взрыво-и пожароопасных объектов должны применяться светильники во взрывозащищенном исполнении, соответствующей категории. Территории резервуарных парков, освещаются прожекторами, установленными на специальных мачтах, расположенных вне обваливания резервуаров. Для каждого вида производственных помещений и технологических площадок установлены определенные нормы их освещенности. Освещенность рабочих мест проверяют люксметром. Общая минимальная освещенность (в лк) для производственных объектов приведена ниже.
В зависимости от числа рабочих смен наружное освещение территории и отдельных объектов допускается включать только во время осмотра или ремонта оборудования. На автоматизированных нефтегазодобывающих предприятиях, где скважины обслуживаются только в дневное время, установка светильников (при проведении аварийных работ в ночное время) у скважины устанавливается розетка. Нормы освещенности для помещений относятся к поверхностям находящимся на расстоянии 0,8 м от пола в горизонтальной плоскости.
Химический состав нефти Главные элементы, из которых состоит нефть, - углерод и водород. Содержание углерода и водорода в различных нефтях колеблется в сравнительно узких пределах и составляет в среднем для углерода 83,5-87% и для водорода 11,5-14%. Наряду с углеродом и водородом во всех нефтях присутствуют сера, кислород и азот. Азота в нефтях мало (0,001-0,3%), содержание кислорода колеблется в пределах от 0,1 до 1 %, однако в некоторых высокосмолистых нефтях оно может быть и выше. Значительно отличаются друг от друга нефти по содержанию среды. В нефтях многих месторождений серы сравнительно мало (0,1-1%). Но доля сернистых нефтей с содержанием серы от 1 до 3% в последнее время значительно возросла. В зависимости от содержания серы нефти подразделяются на малосернистые (содержание серы меньше 0,5%), сернистые (0,5-2%) и высокосернистые (более 2%). В очень малых количествах в нефтях присутствуют и другие элементы, главным образом металлы – ванадий, никель, железо, магний, хром, титан, кобальт, калий, натрий и др. Обнаружены также фосфор и кремний. Содержание этих элементов выражается незначительными долями процента. Из углеводородов в нефтях преобладает либо углеводороды метанового (парафинового), либо нафтенового ряда. Содержание углеводородов ароматического ряда значительно меньше. Простейшим соединением углеводородов парафинового ряда является метан. Молекула метана состоит из одного атома углерода и четырех атомов водорода (СН4). Следующими соединениями углеводородов парафинового ряда являются этан С2Н8,пропан С3Н8, бутан С4Н10 и т.д. Таким образом, каждый последующий член ряда отличается от предыдущего на группу СН2. Состав этих веществ можно выразить одной общей формулой. Если число атомов углерода в молекуле принять за n, то число атомов водорода в ней равно 2 n +2, а общая формула углеводородов парафинового ряда будет СnН2n+2. Углеводороды от метана до бутана включительно при нормальных условиях, т.е. при давлении 0,1 МПа и температуре t=0°С, находятся в газообразном состоянии. Их этих углеводородов в основном и состоят нефтяные газы. Углеводороды, содержащие от 5 до 17 атомов углерода в молекуле (С5Н12 – С17Н36), при нормальных условиях – жидкие вещества. Эти соединения входят в состав нефти. углеводороды, в молекулах которых имеется свыше 17 атомов углерода, - твердые вещества. Молекулы углеводородов нафтенового и ароматического рядов имеют циклическое строение. Углеводороды нафтенового ряда отличаются по составу от соответствующих углеводородов метанового ряда тем, что в их молекулах на два атома водорода меньше и общая формула углеводородов нафтенового ряда имеет вид СnН2n. Из углеводородов нафтенового ряда в нефтях были найдены циклобутан (С4Н8), циклопентан (С5Н10), циклогексан (С6Н12) и др. По физическим и химическим свойствам углеводороды нафтенового ряда близки к метановым плотность их приблизительно средняя между метановыми и ароматическими углеводородами.
Сепарационные установки В процессе подъема жидкости из скважин и транспортирования ее до центрального пункта сбора и подготовки нефти, газа и воды постепенно снижается давление в системе сбора, и из нефти выделяется газ. Объем выделившегося газа по мере снижения давления в системе увеличивается, и поток в нефтегазосборных коллекторах, включая и верхние участки НКТ, состоит из двух фаз: газовой и жидкой. Такой поток называется двухфазным или нефтегазовым потоком. Жидкая фаза может, в свою очередь, состоять из нефти и пластовой воды, содержание которой в потоке может изменяться от нуля до значительных величин. Следовательно, в случае содержание воды в продукции скважин мы имеем дело с трехфазным или нефтеводогазовым потоком, который состоит из нефти, газа и воды. Нефть и выделившийся из нее газ при нормальных условиях не могут храниться или транспортироваться вместе. Поэтому на нефтяных месторождениях совместный сбор нефти и газа и совместное транспортирование их осуществляют только на определенные экономически целесообразные расстояния, а затем и выделившийся газ транспортируют раздельно. Процесс отделения газа от нефти называется сепарацией. Аппарат, в котором происходит отделение газа от жидкой продукции скважин, называют нефтегазовым сепаратором. Однако в некоторых случаях в нефтегазовых сепараторах осуществляется к тому же отделение и сброс свободной воды. В этом случае нефтегазовый сепаратор называют нефтеводогазосепаратором или трехфазным сепаратором. Вывод отсепарированного газа из нефтегазовых сепараторов и раздельный сбор его осуществляется в различных пунктах системы сбора и центральных пунктах сбора подготовки нефти, газа и воды. Каждый такой пункт вывода отсепарированного газа называется ступенью сепарации газа. Ступеней сепарации может быть несколько, и окончательное отделение нефти от газа завершается в концевых сепараторах или в резервуарах под атмосферным давлением. Многоступенчатая сепарация применяется при высоких давлениях на устье скважин для лучшего разделения нефти и газа при последовательно снижающихся давлениях в сепараторах. Нефтегазовую смесь из скважины направляют сначала в сепаратор высокого давления, в котором из нефти выделяется основная масса газа, состоящего главным образом из метана и этана. Из сепаратора высокого давления нефть поступает в сепараторы среднего и низкого давления для окончательного отделения от газа. Сепараторы первой ступени в зависимости от конкретных условий на месторождении могут быть рассредоточены в нескольких пунктах по его территории или сосредоточены наряду с остальными ступенями сепарации на центральном пункте сбора и подготовки нефти, газа и воды. В последнем случае на месторождении не строятся газосборные трубопроводы. Транспортирование же газа всех ступеней сепарации от ЦПС до газокомпрессорной станции или до газаперерабатывающего завода обычно осуществляется по одному газопроводу. Сепараторы, применяемые на нефтяных месторождениях, условно подразделяются на следующие категории: 1) по назначению – замерно – сепарирующие 2) по геометрической форме и положению в пространстве – цилиндрические, вертикальные, горизонтальные и наклонные 3) по характеру проявления основных сил – гравитационные и центробежные (гидроциклонные) 4) по рабочему давлению – высокого (6,4 МПа и более), среднего (2,5-6,4 МПа), низкого (0,6-2,5 МПа) давления и вакуумные 5) по числу обслуживаемых скважин – индивидуальные и групповые 6) по числу ступеней сепарации – первой, второй, третьей ступени и т.д. 7) по числу разделяемых фаз – двухфазный (нефть+газ), трехфазный (нефть+газ+вода)
Вертикальные сепараторы имеют 4 секции: основная сепарационная секция, осадительная секция, секция отбора нефти, каплеуловительная секция. Основная сепарационная секция служит для интенсивного выделения газа из нефти. на работу сепарационной секции большое влияние оказывают степень снижения давления, температуры в сепараторе, физико-химические свойства нефти, особенно ее вязкость, конструктивное оформление ввода продукции скважин в сепаратор. Осадительная секция, в которой происходит дополнительное выделение пузырьков газа, увлеченных нефтью из сепарационной секции. Для более интенсивного выделения пузырьков газа из нефти ее направляют тонким слоем по наклонным плоскостям, увеличивая тем самым длину пути движения нефти, т.е. эффективность ее сепарации. Секция сбора нефти, занимающая самое нижнее положение в сепараторе и предназначенная как для сбора, так и для вывода нефти из сепаратора. Нефть может находиться здесь или в однофазном состоянии, или в смеси с газом – в зависимости от эффективности работы сепарационной и осадительной секций и времени пребывания нефти в сепараторе. Каплеуловительная секция, расположенная в верхней части сепаратора, служит для улавливания мельчайших капелек жидкости, уносимых потоком газа. В составе групповых замерных установок применение вертикальных аппаратов обеспечивает большую точность замеров расхода жидкости в широком диапазоне дебитов скважин, включая малодебитные. Однако вертикальные сепараторы имеют и существенные недостатки: 1) меньшая пропускная способность по сравнению с горизонтальными при одном и том же диаметре аппарата 2) меньшая устойчивость процесса сепарации при поступлении пульсирующих потоков 3) меньшая эффективность сепарации
Обслуживание вертикальных сепараторов сводится к поддержанию в них установленного давления и исправного состояния регулятора уровня, предохранительного клапана, манометра. В случае использования уровнемерных стекол в замерном сепараторе, особенно при вязких нефтях и низких температурах, требуется время от времени промывать соляровым маслом загрязненные стекла, отключая их соотвтствующими кранами от сепаратора. Горизонтальные сепараторы имеют большую пропускную способность по газу и жидкости, чем вертикальные. По некоторым данным, пропускная способность горизонтального сепаратора при одинаковых размерах примерно в 2,5 раза больше, чем вертикального. Это объясняется тем, что в горизонтальном сепараторе капли жидкости под действием силы тяжести падают вниз, перепендикулярно к потоку газа, а не навстречу, как это происходит в вертикальных сепараторах. Большинство горизонтальных сепараторов изготавливается из одной горизонтальной емкости со сферическими днищами (одноемкостные сепараторы), иногда применяют двухъемкостные горизонтальные сепараторы. Область применения горизонтальных сепараторов весьма обширна. Они используются для оснащения дожимных насосных станций, для первой, второй и третьей ступеней сепарации на центральных пунктах сбора и подготовки нефти, газа и воды. Пропускная способность горизонтальных сепараторов, применяемых для первой, второй и третьей ступеней сепарации, может достигать 30000 т/сут по жидкости на каждой ступени. Горизонтальные сепараторы широко применяются также для отделения и сбора свободной воды из продукции скважин на первой или последующих ступенях сепарации, что исключает попадание значительных объемов воды на установку по подготовке нефти. В этом случае они выполняют роль трехфазных сепараторов. Горизонтальные сепараторы некоторых конструкций для повышения пропускной способности и улучшения качества сепарации нефти оборудуются гидроциклонами. Отделение газа от нефти в гидроциклонах происходит за счет центробежных сил. Нефть, имеющая большую плотность, отбрасывается к стенкам гидроциклона, а газовый вихрь, вращаясь, движется в центре. Из гидроциклона нефть и газ отдельно поступает в емкости. Газонасыщенная нефть поступает на сливные полки и далее по стенке в нижнюю часть емкости. Сливные полки уменьшают пенообразование. Движение нефти тонким слоем по полкам способствует отделению нефти и газа. В емкости монтируется механический регулятор уровня, связанный с исполнительным механизмом – заслонкой, установленной после сепаратора на нефтяной линии. Регулятор обеспечивает в емкости необходимый уровень жидкости, предотвращающий прорыв свободного газа в нефтяной коллектор. Наибольшей пропускной способностью по жидкости и газу характеризуются горизонтальные сепараторы, в которые жидкость и газ, предварительно отделенные в подводящих трубопроводах, вводятся раздельно. Такие аппараты получили название сепараторов с предварительным отбором газа. Работает данный сепаратор следующим образом. Нефтегазовая смесь подводится к корпусу сепаратора по наклонным участкам трубопроводов. Уклон трубопровода может колебаться в пределах от 30 до 40°, а трубопровода – от 10 до 15°. К трубопроводу вертикально привариваются 3-4 газоотводных трубки диаметром 50-100 мм. Верхние концы этих трубок приварены к сборному коллектору (депульсатору) газа, подводящему этот газ к корпусу калеуловителя, в котором устанавливаются выравнивающая поток газа перфорированная перегородка и жалюзийная кассета. Капельки нефти, уносимые основным потокам газа по сборному коллектору, проходя жалюзийную кассету (или любую другую), прилипают к стенкам жалюзи и, скапливаясь на них, в виде сплошной пленки стекают вниз в корпус сепаратора. Из корпуса каплеуловителя газ направляется под собственным давлением 0,6 МПа на газоперерабатывающий завод. (ГПЗ). Нефть, освобожденная от основной массы газа в трубопроводе, поступает в корпус сепаратора через нижний патрубок ввода, в котором установлены сплошная перегородка, успокоитель уровня и две наклонные полки, увеличивающие путь движения нефти и способствующие выделению из нефти окклюдированных пузырьков газа, не успевших скоалесцироватиься и выделиться в наклонном трубопроводе. Давление выделившегося из нефти газа повышают при помощи эжектора, затем газ транспортируется на ГПЗ. Для регулирования вывода нефти из сепаратора имеется датчик уровнемера поплавкового типа и исполнительным механизмом. Раздельный ввод газа и жидкости в аппарат имеет ряд преимуществ. При совместном вводе нефтегазового потока в сепаратор с перепадом давления и перемешиванием фаз количество в нефти пузырьков газа размером 2-3 мкм примерно в 4 раза больше, чем в случае раздельного ввода нефти и газа в аппарат без перепада давления. Пузырьки газа таких размеров обычно находятся во взвешенном состоянии и не успевают выделиться из нефти за время ее движения в сепараторе. Таким образом, в сепараторах с раздельным вводом жидкости и газа унос свободного газа вместе с нефтью в несколько раз меньше, чем в сепараторах с совместным вводом продукции, и обычно не превышает 1% от объема жидкости. При раздельном вводе нефти и газа резко уменьшается также объем пены, образующейся в сепараторе в результате удержания части газа и жидкости во взвешенном состоянии, что особенно важно при подготовке нефтей, склонных к пенообразованию может привести к заполнению газового пространства пеной. При заполнении сепаратора пеной отказывает в работе регулятор уровня и пена поступает как в газопровод, так и в выкидную линию для жидкости. В настоящее время разработан ряд блочных сепараторов типа УБС с предварительным отбором газа на пропускную способность от 1500 до 16000 м3/сут. Объем емкости составляет от 30 до 160 м3. Технические данные сепараторов типа УБС приведены в таблице 1. Таблица 1.
Трехфазные сепараторы. По мере роста обводненности продукции скважин, поступающей в сепараторы, начинают преобладать капли воды больших размеров, которые могут легко коалесцировать и отделяться в виде свободной воды. Количество выделившейся из нефтяной эмульсии свободной воды зависит от физико-химических свойств нефти и воды, температуры потока, продолжительности транспортирования, интенсивности перемешивания потока (для поступления в сепаратор) и от многих других причин. Предварительная подача реагента в поток на определенном удалении от сепарационных установок способствует выделению свободной воды из эмульсии. В нефтепромысловой практике отделяемую свободную воду стремятся сбросить как можно раньше – до поступления продукции на установки подготовки нефти, так как нагрев этой воды связан с большим расходом теплоты. Предварительный сброс свободной воды осуществляется в трехфазных сепараторах. В настоящее время разработаны трехфазные сепараторы для работы на первой и последующих ступенях сепарации. Особенностью таких аппаратов является использование в одной емкости двух отсеков: сепарационного и отстойного, сообщающихся между собой через каплеобразователь. Сепаратор работает следующим образом. Смесь нефти, воды и газа по потрубку поступает в сепарационный отсек. Отсепарированный газ подается на ГПЗ, а смесь нефти и воды с небольшим количеством газа из сепарационного отсека по каплеобразователю перетекает в отстойный отсек, где нефть отделяется от воды и газа. Нефть по верхнему патрубку отводится на УПН, вода через исполнительный механизм, работающий за счет датчика регулятора уровня поплавкового типа, сбрасывается из сепаратора в резервуар – отстойник или под собственным давлением транспортируется на блочную кустовую насосную станцию (БКНС). Если в трехфазный сепаратор поступает нефть в виде стойкой эмульсии, то в каплеобразователь подводится с УПН горячая отработанная вода, содержащая поверхностно-активные вещества (ПАВ) для интенсификации разрушения этой эмульсии. Эффективность работы сепаратора любого типа характеризуется следующими 2 основными показателями: 1. количеством капельной жидкости, уносимой потоком газа из каплеуловительной секции; 2. количеством пузырьков газа, уносимых потоком нефти из секции сбора нефти. Чем меньше эти показатели, тем эффективнее работа нефтегазового сепаратора. В хорошо сконструированных нефтегазовых сепараторах обычно унос капелек жидкости вместе с газовым потоком не превышает 15 см3 на 1000 м3 отсепарированного газа, или около 10 г жидкости на 1000 кг продукции, поступающей в сепаратор.
По такой технологической схеме сконструированы и серийно изготовляются автоматизированные блочные установки предварительного сброса пластовой воды типа УПС.
Промысловая подготовка нефти Нефтяные эмульсии и условия их образования Вода в нефти появляется в результате поступления к забою скважины подстилающей воды, закачиваемой в пласт с целью поддержания давления. При движении нефти и пластовой воды по стволу скважины и нефтесборным трубопроводам происходит их взаимное перемешивание и дробление. Процесс дробления одной жидкости в другой называют диспергированием. В результате диспергирования одной жидкости в другой образуются эмульсии. Эмульсией называется такая система двух взаимно нерастворимых или вполне растворимых жидкостей, в которых одна содержится в другой во взвешенном состоянии в виде многочисленных капель (глобул). Жидкость, в которой распределены глобулы, называется дисперсионной средой, а вторая жидкость, распределенная в дисперсионной среде, - дисперсионной фазой. Нефтяные эмульсии бывают двух типов: «вода в нефти» и «нефть в воде». Почти все эмульсии, встречающиеся при добыче нефти, являются эмульсиями типа «вода в нефти». Содержание пластовой воды в таких эмульсиях колеблется от десятых долей процента до 90 % и более. Для образования эмульсии недостаточно только перемешивания двух несмешивающихся жидкостей. Необходимо еще наличие в нефти особых веществ – пригодных эмульгаторов. Такие природные эмульгаторы в том или ином количестве всегда содержатся в пластовой нефти. К ним относятся асфальтены, смолы, нефтерастворимые органические кислоты и такие мельчайшие механические примеси, как ил и глина. Адсорбируясь на поверхности эмульсионных глобул, они образуют своеобразную броню, препятствующую слиянию капель воды. Образованием пленки на поверхности глобулы воды объясняется «старение» эмульсии. Под процессом старения понимается упрочение пленки эмульгатора с течением времени. По истечении времени определенного времени пленки вокруг воды становятся очень прочными и трудно поддаются разрушению. В зависимости от размера капелек воды и степени старения нефтяные эмульсии разделяются на легкорасслаивающиеся, средней стойкости и стойкие. На стойкость водонефтяных эмульсий влияют и некоторые другие факторы: температура, содержание парафина, условия образования эмульсии, количество и состав эмульгированной воды. Стойкость эмульсии при добыче нефти скважинными штанговыми насосами ниже, чем при эксплуатации погружными электроцентробежными насосами.
Основные физико-химические свойства нефтяных эмульсий Для правильного выбора метода разрушения нефтяных эмульсий важно знание их основных физико-химических свойств. Дисперсность эмульсии – это степень раздробленности дисперсной фазы в дисперсионной среде. Дисперсность – основная характеристика эмульсии, определяющая их свойства. Размеры капелек дисперсной фазы в нефтяных эмульсиях изменяются от 0,1 до 100 мкм (10-5-10-2см). Вязкость эмульсии зависит от вязкости самой нефти, температуры, при которой получается эмульсия, количества воды, содержащейся в нефти, степени дисперсности, присутствия механических примесей. Вязкость нефтяных эмульсий не обладает аддитивным свойством, т.е. вязкость эмульсии не равна сумме вязкости нефти и воды. С увеличением обводненности до определенного значения вязкость эмульсии возрастает и достигает максимума при критической обводненности, характерной для данного месторождения. При дальнейшем увеличении обводненности вязкость эмульсии резко уменьшается. Критическое значение коэффициента обводнения называется точкой инверсии, при которой происходит обращение фаз, т.е. эмульсия типа «вода в нефти» превращается в эмульсию типа «нефть в воде». Значение точки инверсии для разных месторождений колеблется от 0,5 до 0,95. Плотность эмульсии можно рассчитать, если известны плотность нефти и воды и их содержание в эмульсии, по следующей формуле:
Электрические свойства эмульсий. Нефть и вода в чистом виде – хорошие диэлектрики. Электропроводность нефти колеблется от 0,5*10-6 до 0,5*10-7 Ом*м-1, пластовой воды – от 10-1 до 10 Ом*м-1. Даже при незначительном содержании в воде растворенных солей или кислот электропроводность ее увеличивается в десятки раз. Поэтому электропроводность нефтяной эмульсии обусловливается не только количеством содержащейся воды и степенью ее дисперсности, но и количеством растворенных в этой воде солей и кислот. В нефтяных эмульсиях, помещенных в электрическом поле, капельки воды располагаются вдоль его силовых линий, что приводит к резкому увеличению электропроводности этих эмульсий. Это объясняется тем, что капельки чистой воды имеют приблизительно в 40 раз большую диэлектрическую проницаемость, чем капельки нефти (є=2). Свойство капелек воды располагаться в эмульсиях вдоль силовых линий электрического поля и послужило основной причиной использования этого метода для разрушения нефтяных эмульсий. Устойчивость нефтяных эмульсий и их старение. Самым важным показателем для нефтяных эмульсий является их устойчивость (стабильность), т.е. способность течение определенного времени не разрушаться и не разделяться на нефть и воду. На устойчивость нефтяных эмульсий большое влияние оказывают дисперсность системы; физико-химические свойства эмульгаторов, образующих на поверхности раздела фаз адсорбционные защитные оболочки; температура смешивающихся жидкостей.
|
Последнее изменение этой страницы: 2019-06-10; Просмотров: 375; Нарушение авторского права страницы