Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Закон отражения от зеркальной поверхности.
Закон преломления света на границе двух прозрачных сред. Дальнейшее изучение этих законов показало, во-первых, что они имеют гораздо более глубокий смысл, чем может казаться с первого взгляда, и во-вторых, что их применение ограничено, и они являются лишь приближёнными законами. Установление условий и границ применимости основных оптических законов означало важный прогресс в исследовании природы света. Сущность этих законов сводится к следующему. Закон прямолинейного распространения света. В однородной среде свет распространяется по прямым линиям. Закон этот встречается в сочинениях по оптике, приписываемых Евклиду и, вероятно, был известен и применялся гораздо раньше. Опытным доказательством этого закона могут служить наблюдения над резкими тенями, даваемыми точечными источниками света, или получение изображений при помощи малых отверстий. Рис. 1 иллюстрирует получение изображения при помощи малого отверстия, причем форма и размер изображения показывают, что проектирование происходит при помощи прямолинейных лучей. А B'
A' В 200 см 20см Рис.1 Прямолинейное распространение света: получение изображения с помощью малого отверстия. Закон прямолинейного распространения может считаться прочно установленном на опыте. Он имеет весьма глубокий смысл, ибо само понятие о прямой линии, по-видимому возникло из оптических наблюдений. Геометрическое понятие прямой как линии, представляющей кратчайшее расстояние между двумя точками, есть понятие о линии, по которой распространяется свет в однородной среде. Более детальное исследование описываемых явлений показывает, что закон прямолинейного распространения света теряет силу, если мы переходим к очень малым отверстиям. Так, в опыте, изображенном на рис. 1, мы получим хорошее изображение при размере отверстия около 0, 5 мм. При последующем уменьшении отверстия - изображение будет несовершенным, а при отверстии около 0, 5-0, 1 мкм изображение совсем не получится и экран будет освещён практически равномерно. 1.2 Закон независимости световых пучков. Световой поток можно разбить на отдельные световые пучки, выделяя их, например, при помощи диафрагм. Действие этих выделенных световых пучков оказывается независимым, т.е. эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно другие пучки или они устранены. Закон отражения света. Луч падающий, нормаль к отражающей поверхности и луч отраженный лежат в одной плоскости (рис. 2), причем углы между лучами и нормалью равны между собой: угол падения i равен углу отражения i'. Этот закон также упоминается в сочинениях Евклида. Установление его связано с употреблением полированных металлических поверхностей (зеркал), известных уже в очень отдаленную эпоху. Рис. 2 Закон отражения.
Рис. 3 Закон преломления. 1.4 Закон преломления света. Преломление света – изменение направления распространения оптического излучения (света) при его прохождении через границу раздела однородных изотропных прозрачных (не поглощающих) сред с показателем преломления n1 и n2. Преломление света определяется следующими двумя закономерностями: преломленный луч лежит в плоскости, проходящей через падающий луч и нормаль (перпендикуляр) к поверхности раздела; углы падения φ и преломления χ (рис.3) связаны законом преломления Снелля:
n1sinφ = n2sinχ или = n, где n – постоянная, не зависящая от углов φ и χ. Величина n – показатель преломления, определяется свойствами обеих сред, через границу раздела которых проходит свет, и зависит также от цвета лучей. Преломление света сопровождается также отражением света. На рис. 3 ход лучей света при преломлении на плоской поверхности, разделяющей две прозрачные среды. Пунктиром обозначен отраженный луч. Угол преломления χ больше угла падения φ; это указывает, что в данном случае происходит преломление из оптически более плотной первой среды в оптически менее плотную вторую (n1 > n2), n – нормаль к поверхности раздела. Явление преломления света было известно уже Аристотелю. Попытка установить количественный закон принадлежит знаменитому астроному Птолемею (120 г. н.э.), который предпринял измерение углов падения и преломления. Закон отражения и закон преломления также справедливы лишь при соблюдении известных условий. В том случае, когда размер отражающего зеркала или поверхности, разделяющей две среды, мал, мы наблюдаем заметные отступления от указанных выше законов. Однако для обширной области явлений, наблюдаемые в обычных оптических приборах, все перечисленные законы соблюдаются достаточно строго. [ 3 ]
Гаусс (1841 г.) дал общую теорию оптических систем, получившую дальнейшее развитие в трудах многих математиков и физиков. Теория Гаусса есть теория идеальной оптической, системы, т.е. системы, в которой сохраняется гомоцентричность пучков и изображение геометрически подобно предмету. Согласно этому определению всякой точке пространства объектов соответствует в идеальной системе точка пространства изображений; эти точки носят название сопряженных. Точно так же каждой прямой или плоскости пространства объектов должна соответствовать сопряженная прямая или плоскость пространства изображений. Таким образом, теория идеальной оптической системы есть чисто геометрическая теория, устанавливающая соотношение между точками, линиями, плоскостями. Идеальная оптическая система может быть осуществлена с достаточным приближением в виде центрированной оптической системы, если ограничиться областью вблизи оси симметрии, т.е. параксиальными пучками. В теории Гаусса требование «тонкости» системы отпадает, но лучи по-прежнему предполагаются параксиальными. Разыскание оптической системы, которая приближалась бы к идеальной даже при пучках значительного раскрытия, есть такая задача прикладной геометрической оптики. Линия, соединяющая центры сферических поверхностей, представляет собой ось симметрии центрированной системы и называется главной оптической осью системы. Теория Гаусса устанавливает ряд так называемых точек и плоскостей, задание которых полностью описывает все свойства оптической системы и позволяет пользоваться ею, не рассматривая реального хода лучей в системе.
Пусть ММ и NN – крайние сферические поверхности, ограничивающие систему, и ОО1 – ее главная ось (рис. 4 ). Проведем луч А1В1, параллельный О1О2; точка В1 есть место входа этого луча в систему. Согласно свойству идеальной системы лучу А1В1 соответствует в пространстве изображений сопряженный луч G2F2, выходящий из системы в точке G2. Как идет луч внутри системы нас не интересует. Второй луч P1Q1 выберем вдоль главной оси. Сопряженный ему луч Q2P2 будет также идти вдоль главной оси. Точка F2 как пересечение двух лучей G2F2 и Q2P2 есть изображение точки, в которой пересекаются лучи А1В1 и P1Q1, сопряженные с G2F2 и Q2P2. Но так как А1В1 P1Q1, то точка, сопряженная с F2, лежит в бесконечности. Таким образом, F2 есть фокус (второй, или задний) системы. Плоскость, проходящая через фокус перпендикулярно к оси, носит название фокальной. Любая точка линии H1R1 сопряжена с точкой линии H2R2, лежащей на такой же высоте от О1О2, как и выбранная. То же относится и к плоскостям, проведенным через H1R1 и H2R2. перпендикулярно к главной оси, т.к. вся система симметрична относительно оси. Плоскость H1R1, изображается на H2R2 прямо и в натуральную величину. Такие плоскости называются главными плоскостями. Таким образом, идеальная оптическая система обладает главными плоскостями. Точки H1 и H2 пересечения главных плоскостей с осью носят название главных точек системы. Расстояния от главных точек до фокусов называются фокусным расстоянием системы f1 = H1R1 и f2 = H2R2. [ 3 ]
Реальные оптические системы дают удовлетворительное изображение только при известном ограничении ширины действующих пучков лучей. Но даже и для идеальных систем, которые могли бы давать правильные изображения плоского предмета при любом угле раскрытия пучков, их ограничение имеет существенное значение. |
Последнее изменение этой страницы: 2019-06-19; Просмотров: 281; Нарушение авторского права страницы