Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Микроциркуляция. Капиллярный кровоток и его особенности.



микроциркуля́ ция — транспорт биологических жидкостей на тканевом уровне. Это понятие включает в себя капиллярное кровообращение (движение крови по микрососудам капиллярного типа), обращение интерстициальной жидкости и веществ по межклеточным пространствам, ток лимфы по лимфатическим микрососудам. Совокупность всех сосудов, обеспечивающих микроциркуляцию, называется микроциркуляторное русло. К нему относятся артериолы, прекапиллярные артериолы, капилляры, посткапиллярные венулы, венулы и артериовенозные анастомозы.

Основная функция микроциркуляции состоит в транспорте клеток крови и веществ к тканям и от тканей. Кроме того, микроциркуляция участвует в процессах терморегуляции, формировании цвета и консистенции тканей.

Артериолы постепенно уменьшаются в диаметре и переходят в прекапиллярные артериолы. Первые имеют диаметр 20-40 мкм, вторые 12-15 мкм. В стенке артериол имеется хорошо выраженный слой гладкомышечных клеток. Их основной функцией является регуляция капиллярного кровотока. Уменьшение диаметра артериол всего на 5% приводит к возрастанию периферического сопротивления кровотоку на 20%. Кроме того, артериолы образуют гемодинамический барьер, который необходим для замедления кровотока и нормального транскапиллярного обмена.

Капилляры являются центральным звеном микроциркуляторного русла. Их диаметр в среднем 7-8 мкм. Стенка капилляров образована одним слоем эндотелиоцитов. В отдельных участках имеются отросчатые перициты. Они обеспечивают рост и восстановление эндотелиоцитов. По строению капилляры делятся на три типа:

1. Капилляры соматического типа (сплошные). Их стенка состоит из непрерывного слоя эндотелиоцитов. Она легко проницаема для воды, растворенных в ней ионов, низкомолекулярных веществ и непроницаема для белковых молекул. Такие капилляры находятся в коже, скелетных мышцах, легких, миокарде, мозге.

2. Капилляры висцерального типа (окончатые). Имеют в эндотелии фенестры (оконца). Этот тип капилляров обнаружен в органах, которые служат для выделения и всасывания больших количеств воды с растворенными в ней веществами. Это пищеварительные и эндокринные железы, кишечник, почки.

3. Капилляры синусоидного типа (не сплошные). Находятся в костном мозге, печени, селезенке. Их эндотелиоциты отделены друг от друга щелями. Поэтому стенка этих капилляров проницаема не только для белков плазмы, но и для клеток крови.

У некоторых капилляров в месте ответвления от артериол находится капиллярный сфинктер. Он состоит из 1-2 гладкомышечных клеток, образующих кольцо на устье капилляра. Сфинктеры служат для регуляции местного капиллярного кровотока.

Основной функцией капилляров является транскапиллярный обмен, обеспечивающий водно-солевой, газовый обмен и метаболизм клеток. Общая обменная капилляров составляет около 1000 м2. Однако количество капилляров в органах и тканях неодинаково. Например в 1 мм3 мозга, почек, печени, миокарда около 2500-3000 капилляров. В скелетных мышцах от 300 до 1000.

Обмен осуществляется путем диффузии, фильтрации-абсорбции и микропиноцитоза. Наибольшую роль в транскапиллярном обмене воды и растворенных в ней веществ играет двусторонняя диффузия. Ее скорость около 60 литров в минуту. С помощью диффузии обмениваются молекулы воды, неорганические ионы, кислород, углекислый газ, алкоголь и глюкоза. Диффузия происходит через заполненные водой поры эндотелия. Фильтрация и абсорбция связаны с разностью гидростатического и онкотического давления крови и тканевой жидкости. В артериальном конце капилляров гидростатическое давлениесоставляет 25-30 мм.рт.ст., а онкотическое давление белков плазмы 20-25 мм.рт.ст. Т.е. возникает положительная разность давлений около +5 мм.рт.ст. Гидростатическое давление тканевой жидкости около 0, а онкотическое около 3 мм.рт.ст. Т.е. разность давлений здесь – 3 мм.рт.ст. Суммарный градиент давления направлен из капилляров. Поэтому вода с растворенными веществами переходит в межклеточное пространство. Гидростатическое давление в венозном конце капилляров 8-12 мм.рт.ст. Поэтому разность онкотического и гидростатического давления составляет – 10-15 мм.рт.ст. при той же разности в тканевой жидкости. Направление градиента в капилляры. Вода абсорбируется в них (схема). Возможен транскапиллярный обмен против концентрационных градиентов. В эндотелиоцитах имеются везикулы. Они расположенные в цитозоле и фиксированы в клеточной мембране. В каждой клетке около 500 таких везикул. С их помощью происходит транспорт из капилляров в тканевую жидкость и наоборот крупных молекул, например, белковых. Этот механизм требует затрат энергии, поэтому относится к активному транспорту.

В состоянии покоя кровь циркулирует лишь по 25-30% всех капилляров. Их называют дежурными. При изменении функционального состояния организма количество функционирующих капилляров возрастает. Например в работающих скелетных мышцах оно увеличивается в 50-60 раз. В результате обменная поверхность капилляров возрастает в 50-100 раз. Возникает рабочая гиперемия. Но наиболее выраженная рабочая гиперемия наблюдается в мозге, сердце, печени, почках. Значительно возрастает количество функционирующих капилляров и после временного прекращения кровотока в них. Например после временного сдавления артерии. Такое явление называется реактивной или постокклюзионной гиперемией. Кроме того, наблюдается ауторегуляторная реакция. Это поддержание постоянства кровотока в капиллярах при снижении или повышении системного артериального давления. Такая реакция связана с тем, что при повышении давления гладкие мышцы сосудов сокращаются и их просвет уменьшается. При понижении наблюдается обратная картина.

Кровообращение в венах

Венозная система начинается посткапиллярными венулами в сосудах микроциркуляторного русла и представляет собой отводящее кровь звено (рис. 9.39). Вены являются емкостными сосудами обладающими самой большой растяжимостью и относительно низкой эластичностью. Внутренняя поверхность большинства вен, за исключением мелких венул, вен воротной системы и полых вен, снабжена клапанами, представляющими собой тонкие складки внутренней оболочки. Их основу составляет волокнистая соединительная ткань. Клапаны способствуют току крови к сердцу и препятствуют ее обратному движению. Одновременно они предохраняют сердце от излишней затраты энергии на преодоление колебательных движений крови, постоянно возникающих в венах под влиянием различных внешних воздействий, таких как атмосферное давление, мышечное сжатие и др.

Вены вмещают 70—80% крови организма. Они в большой степени определяют емкость всей системы кровообращения, величину возврата крови к сердцу, минутный объем кровообращения (табл. 9.3). В основе венозного возврата лежит ряд механизмов.

Кровь перекачивается из области высокого давления в область более низкого давления, в начале венозного русла в венулах большого круга кровообращения оно составляет примерно 15 мм рт. ст., в крупных венах за пределами грудной полости — 5—6 мм рт. ст., в венах грудной полости и при впадении их в правое предсердие почти равно атмосферному и зависит от фаз дыхания. Во время вдоха, когда грудная клетка расширяется, давление в венах понижается и становится ниже атмосферного, при выдохе повышается обычно на 2—5 мм рт. ст.

Давление в начале венозной системы обусловлено остатком движущей силы, которая сообщается крови сокращениями сердца и сохранилась после преодоления сопротивления в артериолах и капиллярах (остаточная сила сердца).

Большую роль в венозном возврате играет присасывающее действие грудной клетки. При вдохе расширяются легкие, возникает отрицательное внутрилегочное давление и одновременно расширяются крупные полые вены. В результате этого возрастает разность давления между началом венозной системы и местом впадения полых вен в сердце. Тем самым облегчается приток венозной крови к сердцу. Воздействие дыхательных движений на венозное кровообращение называют дыхательным насосом. Движение крови к сердцу обеспечивается также его присасывающим действием в фазу диастолы.

Определенное влияние на кровоток в венах оказывают сокращения скелетных мышц, сдавливающие проходящие в них сосуды (рис. 9.40). При сжатии вен давление в них повышается и благодаря наличию в венах клапанов (рис. 9.41), препятствующих оттоку крови к капиллярам, кровоток становится однонаправленным в сторону сердца. Это явление получило название мышечного насоса.

Еще одним фактором, облегчающим приток крови к сердцу, является присасывающе—сдавливающий насосный эффект, оказываемый диафрагмой на органы брюшной полости. Во время вдоха диафрагма сокращается, внутрибрюшное давление увеличивается. Оттесненные диафрагмой органы давят на стенки вен, выжимая кровь в сторону воротной вены и далее в полую вену. Повышение градиента давления между брюшными и грудными венами сопровождается увеличением венозного притока к сердцу. Во время выдоха наблюдается обратная картина. В движении крови играют роль и перистальтические сокращения стенок некоторых вен. В венах печени они сокращаются с частотой 2—3 в 1 мин.

На движение крови в венах действует и гидростатический фактор — тяжесть столба крови, которая давит на стенки всех сосудов, расположенных при вертикальном положении тела ниже сердца (рис. 9.42). Это ведет к скоплению крови в сосудах и их растяжению. Большому скоплению крови в венах противодействуют, помимо других факторов, перистальтические сокращения мышц стенок некоторых вен, например в печени. Если вследствие патологического состояния этого сокращения не происходит или если оно недостаточно то кровь при вертикальном положении тела в значительном количестве скапливается в венах конечностей и брюшной полости (отеки).

В венулах и терминальных венах кровоток, как правило, имеет постоянный характер. В более крупных сосудах возникают небольшие колебания давления и скорости кровотока. В венах среднего калибра скорость кровотока составляет 7—14 см/с, в полых венах она несколько выше — до 20 см/с и более. Колебания скорости кровотока зависят от фаз дыхания и сердечных сокращений. На величину венозного и артериального давления определенное влияние оказывает гидростатический фактор (рис. 9.42).

Венный пульс. Венным пульсом называют колебания давления и объема в венах за время одного сердечного цикла, связанные с динамикой оттока крови в правое предсердие в разные фазы систолы и диастолы. Эти колебания передаются ретроградно, и их можно обнаружить в крупных, близко расположенных к сердцу венах — обычно в полых и яремных. Скорость распространения пульсовой волны составляет 1—3 м/с. Пульсацию периферических вен определить практически невозможно.

Происхождение пульсовой волны венного пульса иное, чем артериального. В то время как причиной артериального пульса является систолическое ускорение, сообщаемое столбу крови энергией сердечного сокращения, причиной венного пульса является прекращение оттока крови из вен к сердцу во время систолы предсердий и желудочков. В этот момент ток крови в больших венах задерживается и давление в них возрастает.

На кривой венного пульса, или флебограмме, различают три волны (рис. 9.43). Они расшифровываются следующим образом. Первая волна (а)возникает во время систолы правого предсердия. В этот момент отток крови из вен к сердцу прекращается и давление в них возрастает. Когда предсердие расслабляется и кровь снова начинает поступать в его полость, давление в вене падает и кривая возвращается к исходному уровню. Однако падение давления прерывается новой волной (с). По времени она совпадает с пульсом соседней сонной артерии и отражает колебание ее стенки. Толчок сонной артерии сообщается вене и вызывает в ней возникновение быстро протекающей волны повышенного давления. После такого кратковременного подъема давление продолжает равномерно падать. Это происходит потому, что кровь непрерывно оттекает в предсердие, находящееся в это время в диастоле. После заполнения предсердий давление в вене вновь начинает повышаться, происходит застой крови и растяжение венозной стенки. Все это вызывает возникновение третьей пологой волны (v). После этого начинается новый сердечный цикл, и в момент систолы предсердий возникает новая первая волна венного пульса.

 

Нервная регуляция кровообращения. К сердцу от головного мозгаидет блуждающий нерв, а от спинного—симпатические. Блуждающий нерв тормозит' деятельность сердца, замедляет и ослабляет, его сокращения. Симпатические нервы, наоборот, уча­щают и усиливают сокращения сердца. Таким образом, симпати­ческие и блуждающий нервы оказывают на сердце противополож­ное действие.

Ко всем кровеносным сосудам подходят ветви симпатических нервов. Импульсы, проходящие по этим нервам, вызывают суже­ние сосудов, а следовательно, уменьшение кровотока. При чрез­мерно сильном раздражении симпатического нерва наступает его торможение, и сосуды не суживаются, а иногда наблюдается даже их расширение.

В естественных условиях регуляция кровообращения всегда носит рефлекторный характер и проявляется в одновременном из­менении деятельности сердца и сосудов. Иными словами, под вли­янием раздражения рефлекторно происходит ускорение или за­медление общего кровотока, т. е. изменение минутного объема крови, а также увеличение или уменьшение кровенаполнения от­дельных органов или систем органов. Важнейший источник реф­лекторного воздействия на сердце и сосуды — изменение мышеч­ной активности, особенно переход от состояния покоя к работе.

Большое значение имеют импульсы, идущие от коры больших полушарий. Так, перед началом спортивных состязаний наблюдает­ся условнорефлекторное учащение сердечных сокращений, расши­рение кровеносных сосудов преимущественно тех мышц, которые должны принять участие в предстоящей работе. Влиянием коры больших полушарий объясняется учащенное сердцебиение или, на­оборот, «замирание» сердца, а также покраснение или побледне-ние лица при волнении или'испуге. В зависимости от того, нахо­дится ли человек в бодром или угнетенном состоянии, выполняет ли он работу охотно или без желания, кора больших полушарий будет различно воздействовать на работу сердечно-сосудистой сис­темы.

Для обеспечения надлежащего содержания в крови кислорода особое значение имеют импульсы, которые идут от самой сердечно­сосудистой системы. Так, в месте разветвления общей сонной ар­терии на наружную и внутреннюю и в стенке аорты имеются ре­цепторы, чувствительные к содержанию в крови кислорода: при его и" збытке наступает рефлекторное замедление сердечных сокра­щений, а при пониженном его содержании — их учащение.

Саморегуляциясердечно-сосудистой системы. При любых ре­акциях на раздражение все участки сердечно-сосудистой системы должны работать согласованно. Такая согласованность обеспечи­вается собственными рефлексами кровеносной системы. В стенках сердца, а также артерий и вен находятся рецепторы, чувствитель­ные не к содержанию кислорода, а к изменениям кровяного давле­ния. При его повышении артерии растягиваются сильнее обычного. Это вызывает раздражение соответствующих рецепторов, особен­но в аорте и в области разветвления общей сонной артерии. От рецепторов по нервам импульсы поступают в сердечно-сосудистый центр продолговатого мозга, который посылает ответные импуль­сы, приводящие к урежению пульса и расширению кровеносных сосудов.

При резком усилении притока крови к сердцу растягиваются стенки предсердий и впадающих в них крупных вен, что влечет за собой раздражение соответствующих рецепторов. В ответ наступает рефлекторное учащение сердечных сокращений, и в ре­зультате увеличивается отток крови из предсердий в желудочки сердца.

Собственные рефлексы сердечно-сосудистой системы, возни­кающие при раздражении рецепторов других ее участков, проявля­ются главным образом в местном сужении или расширении сосудов.

Таким образом кровеносная система сама себя регулирует, поддерживая нормальное кровяное давление и устраняя препят­ствия, возникающие по пути тока крови.

Гуморальная регуляция. Работа сердца и распределение крови между отдельными органами находится под влиянием не только нервной системы, но и ряда веществ, находящихся в крови. Осо­бое значение имеют адреналин и ацетилхолин, которые постоянно в том или ином количестве образуются под контролем нервной системы в организме. Адреналин оказывает на сердце и сосуды такое же действие, как раздражение симпатических нервов: введе­ние его в кровь суживает сосуды, учащает и усиливает сокраще­ния сердца. Ацетилхолин оказывает противоположное действие:

он замедляет и ослабляет сердечные сокращения, расширяет кро­веносные сосуды.

Такая регуляция, осуществляемая через кровь, т. е. гумораль­ным путем, способствует созданию более или менее длительных сдвигов в работе кровеносной системы, на фоне которых могут происходить быстрые рефлекторные реакции.


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 142; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь