Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОПРЕДЕЛЕНИЕ ОКСИДОВ УГЛЕРОДА



       Международный стандарт ИСО 8186 устанавливает газохроматографический метод определения оксида углерода СО при концентрациях, не превышающих 25 мг/м3. Сущность метода заключается в разделении пробы воздуха на составляющие в хроматографической колонке. Колонка заполнена молекулярными ситами. Выделенный оксид углерода конвертируется в метан, содержание которого регистрируется пламенно-ионизационным детектором. Выходной сигнал прибора пропорционален количеству оксида углерода в пробе воздуха. Конверсия СО в СН4 проходит при 350º С на никелевом катализаторе в присутствии водорода.

       Приборы-автоматы для определения СО в выхлопных газах основаны на принципе ИК-спектрометрии. Использование ИК-спектрометрии с Фурье-преобразованием позволило снизить чувствительность определения на три порядка. Волновые числа СО 2123 и 2108 см–1, СО2 – 2342 см–1.

       Международный стандарт ИСО 8760 устанавливает метод определения массовой концентрации оксида углерода в воздухе рабочих мест при концентрации более 10 мг/м3 с помощью индикаторных трубок. Метод заключается в образовании окрашенных продуктов реакции при прохождении СО, присутствующего в воздухе, через индикаторную трубку с реагентами на твердом носителе. Трубки, содержащие оксид иода I2O5, изменяют свою окраску по длине от белого цвета до коричнево-зеленого:

       Мешают алифатические и галогенуглеводороды, которые можно удалить на предварительной обработке с помощью дополнительной защитной трубки, и ацетилен.

       Трубки, содержащие сульфит калия-палладия, изменяют свою окраску по длине от желтого цвета до коричневого:

CO + K2Pd(SO3)2 = Pd + CO2 + SO2 + K2SO3

       Мешающими компонентами являются сероуглерод, галогены, меркаптаны, фосфін и фосген. Ацетилен и сероводород вызывают образование черных пятен. Диоксид серы не мешает определению.

       В настоящее время разработан широкий ассортимент индикаторных трубок для экспрессного определения вредных веществ в воздухе. Например, в России НПО «Крисмас+» выпускает трубки для определения SO2, NO2, NO, CO и др. (табл. 5.1).

       Индикаторные трубки предназначены для санитарно-химического контроля воздуха рабочей зоны, промышленных выбросов в атмосферу, производственных и технологических процессов, химической разведки при чрезвычайных ситуациях в случаях химических и экологических аварий, геологической разведки, химического контроля на пожаро- и взрывоопасных объектах. Разработан набор индикаторных трубок специального назначения для химической разведки и контроля содержания сильнодействующих ядовитых и отравляющих веществ в воздухе – пары азотной кислоты, несимметричный диметилгидразин (гептил), иприт, фосген, дифосген, синильная кислота, хлорциан, люизит, азотистый иприт, зарин, зоман и др.

       Современное направление экоаналитического контроля токсикантов в воздухе – выпуск газоизмерительных приборов на основе электрохимических сенсоров. Так, в книге Золотова Ю.А., Иванова В.М., Амелина В.Г. «Химические тест-методы анализа» описаны характеристики подобного прибора на основе 14 электрохимических сенсоров для определения более 35 токсичных паров и кислорода. Сенсоры легко вставляются в специальные гнезда, предварительно прокалиброванные, и их данные записаны во встроенную электронную память сенсора. Прибор автоматически распознает тип сенсора, диапазон определяемых содержаний, пороги тревог. Сенсоры не выходят из строя при действии на них газов высокой концентрации. Выпускаются также приборы серии Multiwarn со встроенными микропроцессорами и измерительные системы на чипах. Последние позволяют определять пары органических веществ – бензола, толуола, перхлорэтилена, винилхлорида или пары неорганических газов – NH3, HCl, NO2, Cl2, H2S. Выпускаются также биочеки для определения озона, формальдегида, паров органических растворителей, пентахлорфенола, этанола. В качестве чувствительных элементов использованы биосенсоры, содержание интересующего компонента определяют по прилагаемой колориметрической шкале.

       Для определения растворенных газов в растворах используют газочувствительные сенсоры. Сенсор – это недорогое, портативное измерительное устройство, способное непрерывно измерять концентрацию какого-либо компонента в потоке жидкости или газа и преобразовывать химическую информацию в электрический или оптический сигнал. В настоящее время разработаны газочувствительные сенсоры на CO2, NO2, SO2, NH3, H2S, HCN, HF и др. газы. В основе таких сенсоров обычная электрохимическая ячейка с двумя электродами – ионоселективным электродом и электродом сравнения, которые погружены во внутренний раствор электролита. Раствор электролита отделен от анализируемого раствора газопроницаемой мембраной. Мембрана может быть гомогенной или микропористой и обычно имеет толщину порядка 0, 1 мм. Микропористые мембраны изготавливают из гидрофобного полимера тефлона или полипропилена. Сквозь поры мембраны из анализируемого раствора во внутренний раствор свободно проникают молекулы газа, а молекулы воды и растворенные в ней ионы задерживаются гидрофобной

мембраной.

       Гомогенная мембрана обычно представляет собой силиконовую резину. В такой мембране газ растворяется и диффундирует во внутренний раствор. Для обеспечения как можно большей скорости проникновения газа гомогенные мембраны обычно имеют гораздо меньшую толщину, чем микропористые, – порядка 0, 02 мм. Газ диффундирует через мембрану, проникает во внутренний раствор электролита и реагирует с ним с образованием определенных продуктов реакции, концентрацию которых определяют с помощью подходящего ион-селективного электрода. Примеры реакций, протекающих во внутреннем растворе, и соответствующих ионоселективных электродов представлены в табл. 5.2.


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 108; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь