Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные и вспомогательные элементы котлоагрегата



Хвостовыми поверхностями нагрева называют расположенные в котле последними по пути дымовых газов. Они омываются газами сравнительно низкой температуры.

Применяют две основные схемы взаимного расположения экономайзера и воздухоподогревателя:

1. Последовательное размещение, при котором первым по ходу газов находится экономайзер, а за ним – воздухоподогреватель.

2. Двухъярусное (двухступенчатое в рассечку) расположение при котором дымовые газы сначала проходят через верхнюю часть экономайзера и верхнюю часть воздухоподогревателя, а затем через их нижние части.

Двухступенчатое размещение хвостовых поверхностей нагрева несколько усложняет конструкцию котла. Появляются длинные перепускные короба для воздуха, дополнительные коллекторы и перепускные трубы экономайзера. Однако при таком расположении можно повысить температуру воздуха и тем улучшить условия подсушки и воспламенения топлива. Такую схему почти никогда не применяют в газо-мазутных котлах и считают целесообразной лишь при сжигании антрацитов и тощих углей. В энергоблоках с промежуточным перегревом пара дымовые газы настолько охлаждаются в обоих пароперегревателях, что применение двухъярусной схемы становится затруднительным. В котлах сверхкритического давления хвостовые поверхности нагрева размещены последовательно.

Водяные экономайзеры предназначены для нагрева питательной или сетевой воды за счет теплоты уходящих топочных газов, благодаря чему уменьшаются потери теплоты и повышается КПД. По типу бывают групповые и индивидуальные экономайзеры, а по материалу – чугунные и стальные. В водяной экономайзер вода подается питательным насосом, за счет напора которого и осуществляется ее принудительное движение в трубах экономайзера. Для паровых котлов обычно устанавливают индивидуальные экономайзеры, а групповые – на чугунных котлах и паровых (до 1 т/ч пара). Водяные экономайзеры для котлов среднего и высокого давления изготавливают только из стальных труб, для низкого давления – чугунных или стальных. При частичном испарении воды в трубах экономайзер считается кипящим. Чугунные водяные экономайзеры выполняют только некипящими. Температура воды на выходе из чугунного экономайзера должна быть меньше температуры насыщения на 20 °С, так как закипание воды в чугунном экономайзере недопустимо. В стальном экономайзере допустимо закипание воды. Температура воды на входе всех экономайзеров должна быть выше температуры точки «росы» топочных газов на 5…10 °С для избегания низкотемпературной коррозии. Экономайзеры некипящего типа собирают из чугунных, ребристых труб с квадратными фланцами, торцевые стороны этих фланцев имеют канавки с четырех сторон, в которые укладывается шнуровой асбест для уплотнения. Отдельные чугунные, ребристые трубы (длиной 1, 5; 2; 2, 5; 3 м) соединяют между собой калачами.

Для очистки от внешних отложений, особенно между ребрами, чугунные трубы компонуются в блоки так, чтобы число горизонтальных рядов было не более 8 (4 + 4), между которыми устанавливается обдувочный аппарат. Это необходимо для эффективной обдувки внешних поверхностей чугунного экономайзера паром или сжатым воздухом, так как один обдувочный аппарат обслуживает не более 4 рядов труб вверх и 4 – вниз. При растопке котла, пока котельный агрегат не имеет достаточной паровой производительности, нагретая в чугунном экономайзере вода сливается в деаэратор или бак с питательной водой по «сгонной» линии. Вода в экономайзере должна двигаться только снизу вверх со скоростью 0, 3 м/с, так как при нагревании воды выделяется воздух, который потом в верхней части экономайзера удаляется воздушником. Дымовые газы в экономайзере могут двигаться в любом направлении со скоростью 6…10 м/с. Чугунные экономайзеры могут иметь обводной газоход для топочных газов. При чрезмерном повышении температуры воды, выходящей из некипящего экономайзера, следует перевести газы частично или полностью на обводной боров, открыть сгонную линию и усилить питание. В блочных чугунных экономайзерах между ребристыми трубами установлена вертикальная металлическая перегородка, делящая экономайзер на две равные части. Боковые стены имеют кладку из красного кирпича или двухслойную металлическую обшивку, внутри которой уложен изоляционный материал (шлаковата, асбестовермекулит и др.), а торцевые стены экономайзеров после калачей закрываются съемными металлическими крышками с прокладками из асбеста. В верхней части каждой секции установлены взрывные предохранительные клапаны.

На экономайзере некипящего типа устанавливается арматура:

а) на входе – обратный клапан, обводная линия с вентилем, вентиль запорный, регулятор питания, манометр, термометр, предохранительный клапан;

б) на выходе – вентиль для выпуска воздуха (вантуз), манометр, предохранительный клапан, термометр, сгонная линия, запорный вентиль. Кроме того, на нижнем коллекторе должны быть установлены трубопроводы для спуска воды (сливной вентиль), а в удобных местах – устройства для отбора проб воды и измерения температур и давления, а на верхнем коллекторе – вентиль для удаления воздуха.

Экономайзеры кипящего типа выполняются из стальных труб диаметром 28…42 мм и устанавливаются горизонтально в шахматном порядке на каркасе. Они выдерживают высокие давления, в них возможно частичное закипание воды (до 15%), но они больше подвержены коррозии и не отключаются от котла (т.е. остановка экономайзера влечет остановку котла). На входе экономайзера кипящего типа устанавливается такая же арматура, как на некипящих (за исключением обводной и сгонной линий, а также вантуза), а на выходе арматура не устанавливается для обеспечения свободного прохода пароводяной смеси в барабан котла. Питательные экономайзеры предназначены для пропуска питательной воды, а теплофикационные – сетевой воды.

Воздухоподогреватели предназначены для нагрева воздуха за счет теплоты уходящих топочных газов. Воздух, забираемый снаружи или с верхней части котельной, вентилятором подается в воздухоподогреватель, нагревается до температуры примерно 200 °С и поступает в горелки топки, улучшает воспламенение топлива и процесс горения, снижает потери от химического недожога и тем самым повышается КПД котельного агрегата. Воздухоподогреватель располагают обычно после водяного экономайзера. Воздух в воздухоподогреватель нагнетается дутьевым вентилятором через входные короба воздуховоды и отводится к горелкам коробами горячего воздуха. При сжигании в камере газообразного топлива весь воздух вводится через горелку, в которой газ и воздух перемешиваются. При сжигании жидкого топлива также весь воздух вводится через горелку, но топливо с помощью форсунок сначала превращается в мелкие капли, которые затем перемешиваются с воздухом. В этом случае одна часть воздуха вводится через горелку в смеси с топливом (первичный воздух), а другая – через специальные устройства в той же горелке или рядом с ней (вторичный воздух).

По принципу тепловой работы воздухоподогреватели делятся на рекуперативные и регенеративные. В рекуперативных воздухоподогревателях нагрев воздуха осуществляется дымовыми газами через разделяющую их стальную стенку.

 


Рисунок 1.8.3а – Конструкционные схемы рекуперативных трубчатых воздухоподогревателей: 1, 2 – холодный и горячий пакеты ВП; 3, 4 – первый и второй пакеты экономайзера по ходу питательной воды

 

В регенеративных воздухоподогревателях (рис. 1.8.3б) дымовые газы сначала нагревают материал с высокой теплоемкостью (волнистые стальные листы, пустотелые керамические тела, металлические шарики и др.), а затем от этого материала нагревается воздух, т.е. поверхность теплообменника попеременно омывается дымовыми газами и воздухом.

Наибольшее применение получили трубчатые рекуперативные воздухоподогреватели, которые представляют собой куб из стальных труб.

Каждая секция представляет собой пакет вертикальных труб, концы которых укрепляется в отверстиях горизонтальных трубных досок. Трубы наружным диаметрам 51 или 40 мм расположены в шахматном порядке, внутри них движутся обычно сверху вниз дымовые газы, тепло которых передается воздуху, движущемуся между трубами.

Каждая секция представляет собой пакет вертикальных труб, концы которых укрепляется в отверстиях горизонтальных трубных досок. Трубы наружным диаметрам 51 или 40 мм расположены в шахматном порядке, внутри них движутся обычно сверху вниз дымовые газы, тепло которых передается воздуху, движущемуся между трубами.

По ширине котла обычно устанавливается несколько таких секций, над ними ставят второй ряд их, а иногда третий и четвертый. Из одного ряда секций в другой воздух перетекает по перепускным коробам. Расширение воздухоподогревателя при его нагревании во время растопки котла воспринимается обычно горизонтальным компенсатором, расположенным над трубными секциями. При работе котла компенсатор находится в сжатом состоянии. Боковые стены трубных секций нагреваются только воздухом и имеют меньшую температуру, чем трубы, внутри которых движутся нагретые дымовые газы. Различие в тепловом удлинении труб и боковых стен невелико у секций высотой до 3 метров, поэтому секции (кубы) делают не больше этой высоты.

Утечка воздуха в пространстве между соседними секциями предотвращается приваркой к крайним трубам вертикальных стальных полос. Воздух и дымовые газы проходят через ротор вертикально в противоположных направлениях (рис. 1.8.3б). Ротор по сечению разделен глухими перегородками на отдельные секции. Поверхность нагрева, состоит из тонких вертикальных стальных пластин, часть которых изготовляют гофрированными. В целях между пластинами движутся газы и воздух. В газовом потоке пластины нагреваются, а затем, попадая в воздушный поток, отдают воздуху полученное от газов тепло. Потеря напора воздуха при движении через воздухоподогреватель определяется в значительной мере числом рядов труб, которые пересекает воздушный поток.

Пароперегреватели предназначены для получения перегретого пара из сухого насыщенного. Это наиболее ответственный элемент котельного агрегата, так как подвержен высоким температурам рабочего агента. Из соображений надежности работы трубы пароперегревателя выполнены из специальных легированных сталей.

Конструкция пароперегревателя состоит из ряда параллельно включенных стальных петлеобразных труб, выполненных в виде змеевиков и объединенных коллекторами – паросборниками. Они устанавливаются в первом газоходе котла, за топкой, после одного или двух рядов кипятильных труб, а иногда часть змеевиков размещают в топочной камере. В первом случае перегреватель будет конвективным, во втором – радиационным. Так как перегреватель стараются расположить в зоне более высоких температур, то необходимо обеспечить его надежную работу при всех режимах работы – правильным выбором скорости движения пара, распределением его по змеевикам, подбором и изготовлением труб из металла, обладающего надлежащими свойствами. Скорость пара в змеевиках составляет 10…25 м/с, а в коллекторе – в 2 раза меньше.

В пароперегревателе, кроме нагрева пара, происходит испарение капелек котловой воды, вносимой с насыщенным паром из барабана, что вызывает образование накипи в змеевиках. Поэтому в верхнем барабане котла должны быть установлены паро-сепарационные устройства, предназначенные для отделения капель влаги из пароводяной смеси. Для получения сухого насыщенного пара используют физические принципы: гравитацию, инерцию и др. Для этого устанавливают:

• в водном объеме – дырчатый металлический лист с диаметром отверстий 10 мм для выравнивания подъема паровых пузырей и козырек для предохранения от проскока большого объема пара;

• в паровом объеме – дырчатый металлический потолок с отверстиями для выравнивания подъема пара; отбойные щитки; жалюзийный сепаратор, проходя через который, пар делает ряд поворотов, в результате капли воды как более тяжелые выпадают из потока, прилипают к металлической стенке и стекают вниз.

Схемы движения пара в пароперегревателе. Направление движения пара в змеевиках пароперегревателя может совпадать с направлением движения газового потока – прямоточное – или быть ему противоположным – противоточное.

По отношению к потоку топочных газов пароперегреватель может включаться по одной из схем: прямоточная – применяется при малых перегревах пара и требует развитой поверхности нагрева; противоточная – применяется при перегреве пара до 400 °С и позволяет иметь наименьшую поверхность нагрева; комбинированная – применяется при больших температурах пара (более 400 °С).

 

Рисунок 1.8.4 – Схемы включения пароперегревателя: а – прямоточная; б – противоточная; в - смешанная

 

При прямоточной схеме движения пара (рис. 34) требуется большая поверхность нагрева пароперегревателя, что вызвано относительно низким температурным перепадом (температурным напором) между дымовыми газами и паром. Кроме того, при такой схеме возможны пережоги труб в первых змеевиках (по ходу пара), так как соли, уносимые паром из барабана котла откладываются в них больше, чем в последних змеевиках. В современных паровых котлах эту схему применяют редко.

При противоточной схеме движения (рис. 34, б) при прочных равных условиях требуется меньшая поверхность нагрева, но повышается температура нагрева труб в выходных змеевиках пароперегревателя, что может вызвать их пережег. Смешанная схема движения газов и пара (рис. 34, в) наиболее надежна в эксплуатации. В этом случае входные змеевики (по ходу пара), в которых наблюдаются наибольшие отложения солей, и выходные змеевики с паром максимальной температуры отнесены в область умеренных температур дымовых газов.

Регулирование температуры перегретого пара. Температура перегретого пара может колебаться в связи с изменением коэффициента избытка воздуха, температуры питательной воды, нагрузки котла, производительности дымососа, шлакованием внешних поверхностей пароперегревателя. Температура перегретого пара повышается в случаях: снижения температуры питательной воды (уменьшается парообразование), уменьшения отбора пара из котла, увеличения тяги в топке (пламя подсасывается) или увеличения температуры в топке. Температура перегретого пара понижается, если температура в топке снижается, трубы снаружи покрыты сажей, а внутри – накипью. Для исключения возможности повышения температуры перегретого пара и поддержания ее в заданных пределах устанавливают специальные регуляторы-пароохладители.

Пароохладители поверхностного или вспрыскивающего типа устанавливаются на входе пароперегревателя (по ходу движения пара) или в рассечку.

Пароохладители поверхностного типа выполняются в виде змеевиков, по которым проходит питательная вода, а пар – снаружи.

 

Арматура котлов

 

Арматурой котла называют находящиеся под давлением рабочей среды (воды и пара) устройства для управления движением этой среды. Наиболее применяемыми типами арматуры являются вентили, задвижки и клапаны. К арматуре причисляют и водоуказательные колонки барабанных котлов.

На рис. 1.9.1а показана распространенная конструкция вентиля на давление 100÷ 140 кгс/см2. Через корпус вентиля проходит вода или пар, расход которых регулируется поднятием или опусканием тарелки и изменением расстояния между тарелкой и седлом. Перемещение тарелки осуществляется путем поворота штурвала, соединенного посредством конических шестерен со втулкой. Внутрь втулки вставлена верхняя нарезная часть шпинделя. Когда втулка с шестерней вращается вокруг своей оси, шпиндель удерживается от вращения направляющей поверхностью или планкой и перемещается по резьбе вверх или вниз. Вместе со шпинделем перемещается присоединенная к его нижнему концу тарелка. Штурвал, шестерни и втулка присоединены к мостику (траверсе), укрепленному на крышке вентиля. Уплотнение места выхода шпинделя через крышку производится сальником с набивкой. Регулировать количество пропускаемых через трубопровод воды или пара можно при движении их через вентиль в любом направлении.

Это особенно ценно для арматуры высокого давления. Обычно в вентилях малого диаметра жидкость подается под тарелку. У вентилей большого диаметра осуществляется подача жидкости на тарелку, а для облегчения открытия применяют разгрузку вентиля путем отвода воды мимо вентиля по трубе малого диаметра (по байпасу) или путем установки в средней части основной тарелки вентиля разгрузочной тарелки малого диаметра.

Но от направления течения жидкости зависит удобство открытия и закрытия вентиля. Если жидкость подается под тарелку, то есть сначала проходит через седло, а потом омывает тарелку, то значительно облегчается открытие вентиля, но требуется большее усилие для полного его закрытия. Подача жидкости под тарелку удобна также тем, что в периоды, когда вентиль закрыт, разгружается сальник. Если жидкость подавать в обратном направлении, то есть на тарелку вентиля, то затрудняется его открытие из полностью закрытого положения. Но закрытие вентиля получается более плотным вследствие использования давления жидкости для прижатия тарелки к седлу.


Рисунок 1.9.1б – Схема открытия вентиля с разгрузочной малой тарелкой: а – закрытый вентиль; б – открытие малой тарелки; в-полное открытие вентиля

 

На рис. 1.9.1б показано, как при подъеме шпинделя сначала происходит подъем малой тарелки на определенную высоту и как затем она поднимает за собой основную тарелку.

Неплотность затвора вентиля чаще всего вызывается попаданием между седлом и тарелкой песка, окалины или других посторонних предметов. В отличие от вентилей, которыми изменяют (регулируют) количество проходящей рабочей среды, задвижки устанавливают только для того, чтобы иметь возможность полностью прекратить ее подачу. Механизм задвижки допускает только два положения: полное открытие либо полное закрытие. У задвижек и вентилей одинакова верхняя часть – привод для вращения шпинделя и конструкция сальника. Как у вентиля так и у задвижки может быть установлен вертикальный штурвал с коническим приводом или горизонтальный, соединенный со шпинделем цилиндрическими шестернями. Дополнительная паразитная шестерня служит для того, чтобы сохранить обычную резьбу на шпинделе и в то же время обеспечить привычное для людей вращение штурвала по часовой стрелке при закрытии арматуры вручную.

К нижнему концу шпинделя присоединены две тарелки, которые при опускании прижимаются к седлам, а при открытии задвижки поднимаются вместе со шпинделем в верхнюю часть корпуса.

Клапаном называется запорный или регулирующий орган автоматического действия. У паровых котлов имеются обратные, питательные, редукционные и предохранительные клапаны. Обратный клапан препятствует движению рабочей среды в обратном направлении. Так, например, обратные клапаны на питательных линиях закрываются при аварийном падении давления в питательных трубопроводах и препятствует выпуску воды из котла. По конструкции обратные клапаны подразделяют на подъемные и поворотные.

В подъемных клапанах (рис. 1.9.2, а) запорным органом является тарелка 2, хвостовик которой входит в направляющий канал прилива крышки 1.

В поворотных клапанах (рис. 1.9.2, б) тарелка 6 поворачивается вокруг оси 7 и перекрывает проход. Обратные клапаны устанавливают в котельных обычно на напорных линиях центробежных насосов, на питательных линиях перед котлом для пропуска воды только в одном направлении и в других местах, где имеется опасность обратного движения среды. Питательный клапан служит для автоматического регулирования питания котла в соответствии с расходом пара. В клапанах, устанавливаемых на современных котлах, вода прижимает к седлу вертикальный шибер.

Соприкасающиеся поверхности седла и шибера покрыты наплавленным и затем отполированным слоем твердой высоколегированной стали. На рисунке клапан изображен в закрытом положении. По мере перемещения шибера вверх все большее число отверстий в седле открывается и пропускает воду, количество которой растет почти пропорционально перемещению шибера.


Расчетная работа

Исходные данные

Величина Единицы измерения
1. Тип котла 2. Паропроизводительность 3. Вид пара 4. Рабочее давление 5. Температура живительной воды 6. Топливо (твердое, газообразное) 7. Температура холодного воздуха 8. Температура выходящих продуктов сгорания 9. Процент продувки 10. Тип экономайзера КЕ-4–14 D=4 т/ч насыщенный 1, 4 МПа (14 ат) 100 Т 30 150 3%

Конструктивный расчет

 

Новая серия котлов типа КЕ разработана с паропроизводительностью от 2, 5 до 25 т/ч для производства насыщенного или слабо перегретого пара давлением 1, 4 или 2, 4 МПа. Котлы паропроизводительностью 2, 5–10 т/ч имеют длинный верхний и укороченный нижний барабан диаметром 1000 мм. Верхний и нижний барабаны расположены на общей вертикальной оси, их длинна меняется в зависимости от типоразмера котла. Передняя часть верхнего барабана изолирована и расположена над топковой камерой. В водной среде верхнего барабана размещены живительные трубы и штуцер для беспрерывного продувания. Пароводяная смесь, которая образовывается в экранных и кипятильных трубах, поступает под уровень воды в верхнем барабане.

 


Таблица – Конструктивные характеристики

Объем топки Площадь поверхности стен топки Диаметр экранных труб Шаг труб боковых экранов Площадь поверхности нагрева, восприним. лучи Площадь поверх. нагрева конвективных пучков Диаметр труб конвективных пучков Расположение труб конвективных пучков Поперечный шаг труб Продольный шаг труб Площадь живого пересечения для прохода продуктов сгорания Число рядов труб по ходу продуктов сгорания 12, 03 м3 38, 57 м3 51 x 2, 5 мм 55 мм 20, 51 м3 91, 89 м3 51 x 2, 5 мм коридорное 90 мм 110 мм   0, 59 м2 15

 

Сепарация пара происходит в паровом объеме барабана и дырчатом листе, установленном на расстоянии 0, 5 м от верхней образующей барабана, и потом двигается в паропровод или пароперегреватель.

Коллекторы боковых экранов расположены по всей длине котлоагрегатов, и до них кроме экранных труб присоединены настенные трубы конвективного газохода. Это позволило применить легкую натрубную обмуровку. Котлоагрегаты от КЕ-4 до КЕ-10 имеют задний экран, расположенный перед входом из камеры догорания в конвективные пучки. Казаны КЕ с пароперегревателями имеют унифицированный за профилем пароперегреватель, который расположен перед первым пучком конвективной поверхности нагрева. Пароперегреватели … из труб, которые имеют внешний диаметр 32 мм и толщина стенки 3 мм. Пароперегреватели одноходовые и не имеют пароохладителя.

Все котлоагрегаты серии КЕ оснащены цепными воротами с пневмомеханическими закидывателями. Цепные ворота поставляются в виде одного блока, наперед собранного и обкатанного на заводе-изготовителе. Это повысило эксплуатационную надежность ворот и сократило термины ее монтажа.

Для понижения потери тепла от механической неполноты сгорания с отнесением, – топки оснащены системой возврата отнесения. Отнесение возвращается в топку с помощью эжекторов, получающих воздух от вентилятора острого дуновения. Воздух в систему возврата отнесения и в сопла острого дуновения подается вентилятором, который имеет продуктивность 1000 м3/г при полном натиске 3800 Па.

Топочная камера отделена от конвективного пучка глухой мембранной стенкой, сделанной из труб и сваренными между ними стальными полосками (проставками). Во всех типоразмерах серии от 4 до 25 т/ч диаметр верхнего и нижнего барабанов котлоагрегата 1000 мм. Длинна цилиндровой части барабанов в зависимости от продуктивности меняется от 2240 мм (казан продуктивностью 4 т/ч) до 7500 мм (казан продуктивностью 25 т/ч). В каждом барабане в переднем и заднем днище установлены лазовые затворы, что обеспечивает доступ в барабаны при ремонте.

Ширина топочной камеры всех котлоагрегатов серии одинаковая и составляет 1830 мм. Глубина топочной камеры котлоагрегатов серии меняется от 1980 до 7200 мм. Продукты сгорания с топочной камеры через окно, расположенное с левой стороны, следуют в конвективную поверхность нагрева. Она образована трубами, которые соединяют верхний и нижний барабаны. У казанов от 4 до 10 т/ч конвективная поверхность нагрева разделена продольной перегородкой на две части. Продукты сгорания в конвективном газоходе сначала следуют от задней стенки казана до фронтовой, а потом, повернувши на 180 о, идут в обратном направлении. Отведение продуктов сгорания проводится со стороны задней стенки через окно, к которому присоединяется газоход, который направляет их в водяной экономайзер.

 


Расчет горения топлива

Для расчетов горения топлива из таблиц ТРК выписываем элементарный состав топлива соответствующего месторождения для твердого топлива:

 

WP, AP, SP, CP, HP, NP, OP

После чего проверяется состав топлива, который должен быть равен 100%:

WP + AP + SP + CP + HP + NP + OP = 100%

 

Далее … теплообразующую способность твердого топлива по формуле:

 

 кДж/кг

 

Нижнюю теплообразующую способность топлива … переводим соответственно в ккал/м3 и ккал/кг для чего …  ккал/кг

 

Для твердого топлива для дальнейших расчетов … приведенные характеристики топлива:

При расчете паровых и водонагревающих котлов определяем теоретические и действительные объемы воздуха, необходимого для полного сгорания. Это выполняем в такой последовательности:

1) определяем теоретический объем воздуха, необходимого для полного сгорания при сжигании твердого топлива:

 м3

 м3/кг

 

2) определяем объем трехатомных газов при сжигании твердого топлива:

 

 

 м3/кг

 

При расчете стоит учитывать, что диоксид углерода и серчатый газ принято объединять и называть такие «сухие трехатомные газы», обозначая через RO2, то есть RO2=32+SO2.

3) определяем теоретический объем азота в продуктах сгорания при сжигании твердого и жидкого топлива:

 

 м3/кг

 

4) определяем теоретический объем водных паров при сжигании твердого топлива:

 

 м3/кг

 

5) определить теоретический объем сухих газов:

 

6) определить суммарный теоретический объем газов:

 

 

Далее рассчитываем среднюю характеристику продуктов сгорания в поверхностях котла, расчет ведем в табличной форме.

 

Таблица 2.5 – Тепловоздержание воздуха и продуктов сгорания

Название расчетной величины и формулы

V газов

Температура продуктов сгорания

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

2000

Энтальпия теоретического количества воздуха необходимого для горения

6, 512 205, 8 414, 2 626, 5 842, 7 1064, 1 1290, 7 1784, 3 1758, 2 1992, 7 2233, 6 2481, 1 2728, 5 2976 3230 3484 3737, 9 3991, 9 4245, 8 4506, 3

4766, 8

Энтальпия сухих трехатомных газов

1, 12 45, 5 95, 6 149, 5 206, 5 266, 6 327 390, 9 455, 8 521, 9 589, 1 657, 4 626, 9 796, 3 866, 9 937, 4 1008 1079, 7 1151, 4 1223

1295, 8

Энтальпия теоретического количества двухатомных газов

5, 15 159, 7 319, 8 482 647, 9 816, 8 988, 8 1369, 9 1344, 2 1529, 6 1715 1900, 4 2085, 8 2276, 3 2472 2662, 6 2858, 3 3054 3249, 7 3450, 5

3646, 2

Энтальпия теоретического количества водных паров

0, 595 21, 4 43, 3 65, 7 89 112, 9 137, 4 163 189, 8 216, 6 245, 1 273, 7 302, 9 333, 2 363, 5 395, 1 426, 6 458, 7 498, 5 524, 2

558, 1

Энтальпия теоретического количества продуктов сгорания

+

  226, 6 458, 7 697, 2 943, 4 1196, 2 1453, 2 1923, 8 1989, 8 2268, 1 2549, 2 2831, 5 3015, 5 3405, 8 3702, 4 3995, 1 4292, 9 4592, 4 4899, 6 5197, 7

5500, 1

Энтальпия

действительного количества

продуктов

сгорания за элементами газового тракта

 

)

За топкой                     3219, 3 3575, 8 3834, 2 4298, 6 4671, 4 5040, 3 5414, 3 5790 6173, 3 6561, 4

6930, 1

За 1-м газоходом             1904, 9 2548, 3 2517, 3 2965, 5 3219, 3                  
За 2-м газоходом       979, 1 1322, 6 1675, 1 2034                          
За водным экономайзером   335, 7 678, 2 1029, 2                                

 

Таблица 2.4 – Средняя характеристика продуктов сгорания в поверхностях котла

Название расчетной величины и расчетная формула

Обозначения

Единицы измерения

Название элементов газового тракта

Топка 1 газоход 2 газоход Водный экономайзер
1 2 3 4 5 6 7
Коэффициент излишка воздуха в конце топки - 1, 2      
Присос по элементам тракта -   0, 05 0, 1 0, 15
Коэффициент излишка воздуха за элементом тракта - 1, 2 1, 25 1, 35 1, 43
Средний коэффициент излишка воздуха - 1, 2 1, 225 1, 3 1, 39
Избыточный объем воздуха м3/кг 1, 302 1, 465 1, 95 2, 4
Избыточный объем водяных паров м3/кг 0, 021 0, 026 0, 031 0, 039
Действительный объем водяных паров м3/кг 0, 616 0, 621 0, 626 0, 632
Действительный объем продуктов сгорания м3/кг 6, 886 6, 891 6, 896 6, 906
Объемная частица сухих трехатомных продуктов сгорания - 0, 15 0, 14 0, 11 0, 09
Объемная частица водяных паров в продуктах сгорания - 0, 145 0, 132 0, 12 0, 07
Общая объемная частица трехатомных газов в продуктах сгорания - 0, 295 0, 272 0, 23 0, 16

 

Таблица 2.7 – Расчет топки

Название расчетной величины Обозначения Ед. измерения Расчетная формула Расчет Расчетная величина
Объем топочной камеры включая камеру догорания Vт м3

Из расчета конструктивных характеристик

12, 03
Полная поверхность нагрева, который получает лучи Hn м2

Из расчета конструктивных характеристик

20, 51
Степень экранирования топки -

Из расчета конструктивных характеристик

0, 65
Поправочный коэффициент -

По РН-6–02

1
Коэффициент ослабления луча 3-х атомными газами Kr -

По номограмме 9

0, 7
Коэффициент ослабления лучей в пламени K - 0, 207
Степень черноты вещества заполняющего топку a -

По номограмме 9


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 242; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.108 с.)
Главная | Случайная страница | Обратная связь