Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Показатели и характеристики технического диагностирования



(контроля технического состояния)

28. Продолжительность технического диагностирования (контроля технического состояния ) Интервал времени, необходимый для проведения диагностирования (контроля) объекта
29. Достоверность технического диагностирования (контроля технического состояния) Степень объективного соответствия результатов диагностирования (контроля) действительному техническому достоянию объекта
30. Полнота технического диагностирования (контроля технического состояния) Характеристика, определяющая возможность выявления отказов (неисправностей) в объекте при выбранном методе его диагностирования (контроля)
31. Глубина поиска места отказа (неисправности) Характеристика, задаваемая указанием составной части объекта с точностью, до которой определяется место отказа (неисправности)
32. Условная вероятность необнаруженного отказа (неисправности) при диагностировании (контроле) Вероятность того, что неисправный (неработоспособный) объект в результате диагностирования (контроля) признается исправным (работоспособным)
33. Условная вероятность ложного отказа (неисправности) при диагностировании (контроле) Вероятность того, что исправный (работоспособный) объект в результате диагностирования (контроля) признается неисправным (неработоспособным)
  34. Условная вероятность необнаруженного отказа (неисправности) в данном элементе (группе) Вероятность того, что при наличии отказа (неисправности) в результате диагностирования принимается решение об отсутствии отказа (неисправности) в данном элементе (группе)
35. Условная вероятность ложного отказа (неисправности) в данном элементе (группе) Вероятность того, что при отсутствии отказ; (неисправности) в результате диагностирование принимается решение о наличии отказа (неисправности) в данном, элементе (группе)

3.2 Формулировка задачи определения неисправностей, выбор способа диагностирования

 

3.2.1 Формулировка задачи определения неисправностей

Диагностическое обеспечение должно закладываться на стадии проектирования, обеспечиваться на стадии производства и поддерживаться на стадии эксплуатации.

Определение технического состояния системы в ходе эксплуатации или после ремонта называют техническим диагностированием. С помощью технической диагностики предсказывают возможные отклонения в режимах работы и состояниях машин, аппаратов и устройств, а также разрабатывают методы и средства обнаружения и локализации неисправностей в системах. Различным нарушениям системы соответствуют определенные технические состояния. Техническим состоянием называют совокупность свойств системы, подверженных изменениям в процессе ее производства или эксплуатации. Эти свойства характеризуются признаками (требованиями, параметрами), устанавливаемыми нормативно-технической документацией на систему. Введение переменной состояния функционирования h позволяет каждому значению h ставить в соответствие определенное техническое состояние.

Совокупность средств, правил и алгоритмов диагностирования образует систему технического диагностирования (СТД).

Основные задачи диагностирования при проектировании - проверка соответствия разработанной системы исходному заданию на проектирование и обеспечение наилучшего режима и высокого качества диагностики системы на последующих этапах на предмет установления возможных отказов. Одновременно с проектированием системы создают СТД. Так как значительная доля аварий связана с ошибками при проектировании, а стоимость каждой пропущенной ошибки исключительно велика, то диагностированию необходимо уделять большое внимание.При изготовлении, монтаже и пуске систем техническое диагностирование - неотъемлемая часть выполняемых работ. Основная цель диагностирования на этих этапах - проверка работоспособности; возможны два технических состояния системы: работоспособное (hо) и неработоспособное. При ремонте с помощью диагностики можно выявить, содержит ли система дефектные элементы, действительно ли устранены все неисправности. Алгоритмы технического диагностирования должны обеспечивать требуемую достоверность результатов определения состояния системы.

При эксплуатации системы с помощью технического диагностирования определяют состояние функционирования (допустимое, предаварийное, аварийное), осуществляют поиск неисправности. Число состояний, различаемых в результате поиска неисправности, определяется глубиной поиска дефекта и требуемой достоверностью результатов диагностирования. Глубина поиска задается указанием элементов системы, с точностью, до которых определяют место неисправности. Достоверность результатов диагностирования - степень соответствия состояния, оцененного по этим результатам, истинному состоянию системы. Количественно достоверность характеризуется вероятностью совпадения оцененного и истинного состояний.

Результаты диагноза используют при прогнозе развития событий и поиске причин отказов, аварий и т.п. В первом случае предсказывают (прогнозируют) состояние системы, в котором она может оказаться в некоторый будущий момент времени. Например, реактор в настоящий момент находится в предаварийном состоянии; определяются его возможные переходы в другие состояния, и в первую очередь в аварийные. Во втором случае восстанавливают состояние, в котором система находилась в некоторый предшествующий момент времени. Это особенно важно при расследовании аварий, выявлении причин их возникновения. Определение состояний, предшествующих аварии, а следовательно, и первопричины ее возникновения, исключительно важно для недопущения подобных аварий в будущем и на аналогичных системах.

Роль технической диагностики возрастает с увеличением мощности и сложности систем, для которых интуитивные методы и ручные способы определения состояний непригодны. Задачи диагностики сложных систем решают с использованием ЭВМ в рамках АСУТП или автоматизированных систем диагностики (АСД).

Например, применительно к химико-технологическому комплексу АСД выполняет следующие функции:

- определение текущего состояния работоспособности, обнаружение предаварийных и аварийных состояний;

- локализация неисправностей до уровня отдельных аппаратов, элементов систем контроля, управления и защиты;

- регистрация моментов обнаружения неисправностей и их устранения;

- прогнозирование значений переменных химико-технологических процессов в различных состояниях работоспособности;

- прогнозирование предельного значения времени восстановления работоспособности системы;

- регистрация фактического времени восстановления работоспособного состояния;

- отображение оперативной информации о неисправностях на экране дисплея оператора;

- запись, накопление и хранение на магнитных дисках информации о неисправностях;

- выдача накопленной информации о неисправностях системы.

АСД, с помощью которой решают данные задачи, может быть реализована, например, на ЭВМ. На основе АСД строится автоматизированная система обеспечения безаварийности. Схема АСД приведена на рис. 3.1. Данная система осуществляет текущий контроль входных х, выходных у, переменных и параметров А объекта химической технологии.

После преобразования сигналов от датчиков в унифицированную форму (блок 2) значения x(t), y(t), A(t) сопоставляют с допустимыми для нормальной работы (блок 4), т.е. проверяют выполнение условий x(t) Хдоп, y(t) Yдоп, A(t) Адоп, где Хдоп, Yдоп, Адоп - области допустимых значений соответственно х, y, А. Если какое-либо условие не выполняется, то в блоке 5 принимается решение о выдаче сигнала тревоги S(х, у, А), а также выработке корректирующих воздействий управляющими устройствами (блок 11). В блоке 10 по данным о x(t), y(t), а иногда и отдельных значений h(t), оценивают вектор фазовых координат z(t) и переменную состояния функционирования h(t). Значения z(t) и h(t) сопоставляют с допустимыми (блок 9), т.е. проверяют условия z(t) Zдоп, h(t) Нд. В блоке 5 анализируется текущее состояние системы в случае опасности и выдается сигнал предупреждения Sп(z, h) или тревоги, S(z, h) блоком 3. Блоком 7 производится диагностика имеющихся нарушений, а блоком 6 - проверка работоспособности системы обеспечения безаварийности с помощью специальных тестов.

Важное место в автоматизированных системах диагностики (АСД) занимают приборы для контроля физико-химических параметров веществ, прежде всего газоанализаторы, ализаторы жидкостей и создаваемые на их основе сигнализаторы. Например, сигнализатор наличия горючих газов в воздухе калибруют на один из газов (метан, циклогексан, пропан, этиловый спирт, дивинил, метиловый спирт, бензол, этилацетат, пропилен, стирол и др.).

Рис. 3.1. Схема автоматизированной системы диагностики: 1 - объект; 2 - первичные преобразующие и обрабатывающие устройства; 3 - сигнал тревоги; 4 - сопоставление с интервалами, допустимыми для нормальной работы; 5 - анализ и принятие решения; 6 - проверка работоспособности системы; 7 - диагностика нарушения; 8 - сигнал о нарушении; 9 - сопоставление с интервалом Zдоп и подмножествами состояний Нд, Hпа, Ha; 10 - оценка переменных состояния z, h; 11 - коррекция управляющих воздействий

 


3.2.2 Выбор способа диагностирования.

Классификация методов технического диагностирования при эксплуатации системы и в нерабочем состоянии показана на рис. 3.2

 

Рис. 3.2. Методы, технического диагностирования

 

При эксплуатации технических систем наиболее распространено функциональное и тестовое диагностирование (рис. 3.2).

В первом случае состояние системы определяют по результатам текущего контроля за входными х и выходными у переменными. Во втором случае на систему подают специальные тестовые воздействия хт.

 

Рис. 3.3. Структурные схемы диагностирования: а - функционального; б - тестового


Для технологического оборудования производств используют в основном функциональное диагностирование, для автоматических устройств контроля, управления и защиты применяют оба вида диагностирования, вычислительные средства, программное обеспечение проверяют с помощью тестов. При тестовом контроле на вход проверяемого устройства подаются специально подобранные совокупности входных воздействий (проверяющие тесты). Полученную на выходе реакцию сравнивают с эталонной. Если они совпадают, то устройство на момент контроля находится в работоспособном состоянии. В противном случае устройство неисправно, и подаются диагностические тесты для установления места, причины и вида неисправности. Разработаны специальные методы построения оптимальных тестов, позволяющих за минимальное время проверять работоспособность устройства в целом, а также алгоритмы автоматического решения задач синтеза проверяющих и диагностических тестов. Тесты разрабатывают одновременно с проектированием объекта.

Тестовое диагностирование

Тест[3] (англ. test — проба, испытание, исследование) — задание с известным решением, предназначенное для проверки качества системы. Задача построения теста состоит в том, чтобы найти такую совокупность и последовательность входных воздействий, при подаче которой на объект диагностирования получаемые ответы объекта в заданных контрольных точках позволяют делать заключение о его техническом состоянии. Проверяющие тесты предназначены для проверки исправности или работоспособности объекта, а тесты поиска дефектов — для указания места и, возможно, причин дефектов, нарушающих исправность и работоспособность объекта диагностирования. Для дискретных объектов тесты (их алгоритмы) строятся либо по структурным, либо по функциональным моделям. Тесты могут быть как строго определенными (детерменированными) так и вероятностными (псевдослучайные входные воздействия также относятся к последним). В качестве тестовых могут быть использованы входные воздействия, являющиеся рабочими при применении системы по назначению. Такие тесты называют функциональными. Однако необходимо помнить, что функциональные тесты пригодны только для проверки работоспособности объектов, так как обеспечиваемая ими полнота обнаружения и глубина поиска дефектов явно недостаточны для проверки исправности и поиска дефектов. Другой стороной тестового диагностирования являются задачи выбора и разработки средств реализации тестов. Средства тестового диагностирования содержат две основные части — генератор тестовых воздействий и анализатор ответов объекта на тестовые воздействия. Чаще всего генератор и анализатор функционально и конструктивно выполняют отдельно друг от друга. Генератор хранит и создает (генерирует) тесты и подает их на объект диагностирования. Анализатор хранит полученные ответы, сравнивает фактические ответы с ожидаемыми и выдает результат — диагноз. Часто анализатор представляет собой совокупность эталона (исправная копия объекта) и схему сравнения. Также часто часть функций генератора и анализатора возлагается на человека.


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 254; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь