Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Химические основы домашнего приготовления пищи
Основные химические процессы, происходящие при тепловой кулинарной обработке
Около 80 % пищевых продуктов проходит ту или иную тепловую обработку, при которой повышается, правда, до определенных пределов, усвояемость, происходит размягчение продуктов, что делает их доступными для разжевывания. Многие виды мяса, зернобобовых и ряд овощей вообще исчезли бы из нашего питания, если бы не подвергались тепловой обработке. Воздействие теплоты приводит к разрушению вредных микроорганизмов и некоторых токсинов, что обеспечивает необходимую санитарно-гигиеническую безопасность продуктов, в первую очередь животного происхождения (мясо, птица, рыба, молочные продукты) и корнеплодов. Таким образом, тепловая обработка повышает микробиологическую стойкость пищевых продуктов и продлевает срок их хранения. При тепловой обработке некоторых продуктов (например, зернобобовых, яиц) разрушаются ингибиторы ферментов пищеварительного тракта человека, при обработке зерновых (особенно кукурузы) высвобождается витамин РР (ниацин) из неусвояемой неактивной формы — ниацитина. Наконец, немаловажным фактором является то, что различные виды тепловой обработки позволяют разнообразить вкус продуктов, что снижает их «приедаемость». Однако все это вовсе не означает, что тепловая обработка продуктов не лишена недостатков. При тепловой обработке разрушаются витамины и некоторые биологически активные вещества, частично извлекаются и разрушаются белки, жиры, минеральные вещества, могут образовываться нежелательные вещества (продукты полимеризации жиров, меланоидины и др.). Таким образом, задача рационального приготовления пищи заключается в том, чтобы нужная цель была достигнута при минимальной потере полезных свойств продукта. Учитывая особенности приготовления растительных и животных продуктов, рассмотрим их отдельно. Растительные продукты Отличительной особенностью растительных продуктов является высокое содержание в них углеводов: свыше 70 % сухих веществ. Поэтому рассмотрим их более подробно. Абсолютное большинство растительных продуктов, используемых в питании человека, — это части растений с живыми паренхимными клетками, в которых и содержатся вещества, представляющие интерес с точки зрения питательности: моно- и олигосахариды и крахмал. Эти клетки имеют первичную оболочку, состоящую из низкомолекулярной целлюлозы и низкомолекулярных фракций гемицеллюлоз, важной отличительной особенностью которых является преобладание между структурными единицами β -1, 4-связи, и именно эта связь не разрушается пищеварительными ферментами человека. В срединной пластинке и межклетниках находятся пектиновые вещества, в основе которых лежат остатки D-галактуроновой кислоты, соединенные между собой α -1, 4-связями (эта связь также не разрушается пищеварительными ферментами человека). Однако в зависимости от фазы развития живой клетки степень полимеризации может сильно колебаться: от 20 до 200 и более остатков. С увеличением степени полимеризации уменьшается растворимость пектиновых веществ в воде и увеличивается механическая прочность. Так называемый протопектин, с которым связывают механическую прочность плодов, ягод и овощей, представляет собой в действительности высокомолекулярный пектин, образующий за счет связывания воды вторичную структуру, которая благодаря особым свойствам связанной воды придает твердость растительным продуктам. Вместе с тем все растения содержат активные пектинэстеразы и менее активные полигалактуроназы. В определенный период жизни растения эти ферменты активизируются и начинают разрушать вторичную структуру пектина с образованием низкомолекулярных пектинов и воды. При этом происходит размягчение продукта. Этот ферментативный процесс может происходить и при хранении. Поскольку первичная стенка легкопроницаема, а вторичной и тем более третичной стенок в живых клетках нет, образовавшиеся под действием пектолитических ферментов низкомолекулярный пектин и вода частично переходят в протоплазму клеток. Тепловая обработка растительных продуктов, содержащих заметное количество пектинов (овощи, фрукты, картофель, корнеплоды), также направлена на разрушение вторичной структуры пектина и частичное освобождение воды. Этот процесс начинается при температуре свыше 60 °С и затем ускоряется примерно в 2 раза на каждые 10 ° повышения температуры. В результате в готовом продукте механическая прочность уменьшается более чем в 10 раз. Например, механическая прочность при сжатии сырого картофеля составляет 13-10а Па, вареного — 0, 5-10й, свеклы — соответственно 29, 9-10s и 2, 9-105 Па. Следует отметить, что механическая прочность растительных продуктов зависит также от содержания в них воды. Чем меньше в продукте свободной воды, тем больше его прочность при других равных условиях. (Сублимированные продукты не содержат свободной воды и обладают высокой механической прочностью, которая снижается при их гидратации.) Выделение воды при разрушении протопектина также способствует размягчению продукта. С учетом сказанного рассмотрим основные процессы, происходящие при тепловой кулинарной обработке. При варке помимо термического распада вторичной структуры пектина происходит насыщение клеток водой (внедрение воды в белки, пектины, крахмал). При этом особое значение имеет гелеобразование крахмала и низкомолекулярного пектина, которые при темпера-туре 60—80 °С внутри продукта становятся частично растворимыми в воде. Хотя крахмал остается в плазме клетки, а пектин— в межклеточном пространстве, извлечение крахмала и пектина происходит не только с поверхностных разрушенных клеток, но и из внутренних слоев. Одновременно при варке экстрагируется ряд водорастворимых веществ (сахаров, аминокислот, органических кислот, минеральных веществ и витаминов) из слоев продукта, соприкасающихся с водой. В целом же, при варке часто происходит абсолютная потеря воды, величина которой зависит от природы продукта (например, при варке картофеля 2—6 %, капусты — 7—9 %, что объясняется разрушением вторичной структуры пектинов). Длительность варки зависит от температуры и размеров продукта. При варке под давлением, когда температура повышается против обычной на 2—3°, длительность варки сокращается примерно в 1, 5 раза. Мелкие кусочки прогреваются до 70—80 °С во всем объеме быстрее крупных, но при этом увеличивается извлечение водорастворимых веществ. Поэтому степень измельчения не должна быть сильной. На практике установлены оптимальные режимы длительности варки и степени измельчения продукта. Варка неочищенных продуктов (свеклы, моркови, картофеля в кожуре) не отражается на длительности, но приводит к заметному уменьшению потерь пищевых веществ, так как плотный поверхностный слой (эпидермис, перидерма) препятствует экстрагированию. Варка на пару также уменьшает потери пищевых веществ по сравнению с варкой в воде, так как экстрагирование идет только с самих поверхностных слоев. При жарке происходит, в основном, термический распад вторичной структуры пектинов с образованием растворимых пектинов и воды. Крахмальные зерна и низкомолекулярный пектин начинают реагировать с водой и частично переходят в гелеобразное состояние. Однако, если испарение воды из продукта при жарке происходит достаточно интенсивно, гель высыхает, и продукт снова становится твердым, его механическая прочность увеличивается в несколько раз. Нередко жарку проводят в большом количестве жира (во Фритюре). Фактически это не жарка, а варка в жире. При этом температура среды оказывается выше, чем при обычной варке, размягчение происходит быстрее. Жирорастворимых веществ в растительных продуктах мало, поэтому потери пищевых веществ при жарке во фритюре незначительны, за исключением, конечно, распадающихся при этом витаминов. Тепловая обработка растительных продуктов, содержащих значительное количество пектина, но много крахмала (зерновые, зернобобовые), сопровождается клейстеризацией крахмала и заключается, как правило, в варке в воде. Поглощение воды, клейстеризующимся крахмалом достигает 100—200 %. Животные продукты В животных продуктах наиболее ценным в пищевом и кулинарном отношении является белок. В принципе надо говорить не белок, а белки, так как существует множество фракций, отличающихся по составу и свойствам. Механическая прочность мясных изделий обусловлена определенной жесткостью третичной структуры белков. Наибольшей жесткостью обладают белки соединительных тканей (коллаген и эластин). Одним из основных, но не единственным фактором обусловливающим жесткость третичной структуры большинства белков животного происхождения за исключением яиц и икры является присутствие в них воды (в форме прочносвязанной' гидратной и др., которые здесь не рассматриваются). В мясных продуктах вода в третичной структуре белка связана главным образом с мышечными белками, а не с соединительнотканными. Содержание соединительнотканных белков зависит от характера сырья, возраста животного и ряда других условий. В среднем, меньше всего их в рыбе (1—4 %), затем в молодых птицах и свинине (до 8 %), больше всего (8—15 %) в убойном мясе говядины и баранины. Тепловая обработка животных продуктов и заключается в частичном разрушении соединительнотканных, а также мышечных белков. Разрушение происходит за счет воды, участвующей в образовании третичной структуры мышечных белков (практически вода в мясе связана главным образом с этими белками) и освобождающейся при их температурной коагуляции. При тепловой обработке высвобожденная вода внедряется непосредственно во вторичную структуру белков (главным образом коллагена), разрушая их и приводя соединительнотканные белки в желатинообразное состояние. Эту фазу часто рассматривают как образование из коллагена глютина. Механическая прочность мясных продуктов при этом заметно уменьшается. Температурная коагуляция белков в зависимости и от их природы начинается с 60°, но в большинстве случаев с 70 0С. При варке и жарке мяса температура внутри изделия в зависимости от вида мяса и величины куска обычно достигает 75—95 °С. Потери пищевых веществ при варке происходят за счет частичного вытапливания жира и экстрагирования ряда экстрактивных компонентов из тканей (минеральные, азотистые и безазотистые вещества, витамины). При жарке потери обусловлены вытапливанием жира, частичным выделением сока, термическим разрушением витаминов. Потери воды происходят не только при жарке, но и при варке мясных продуктов в воде, достигая (в отличие от растительных продуктов) заметных величин — в среднем от 30 до 50 % в зависимости от вида мяса. Эти потери происходят за счет разрушения третичной структуры мышечных белков при коагуляции. В то же время вторичная структура неспособна уже удерживать большое количество воды, которая выделяется вместе с рядом водорастворимых веществ во внешнюю воду. Варка мясных продуктов под давлением вследствие повышения температуры ускоряет желатинизацию и сокращает, таким образом, время для получения готового продукта. Минимальные потери пищевых веществ наблюдаются при тушении и запекании. Сравнительно небольшие потери происходят при использовании мяса в виде котлет (выделяющиеся при жарке вещества удерживаются находящимся в котлетах хлебом) [13]. |
Последнее изменение этой страницы: 2020-02-17; Просмотров: 126; Нарушение авторского права страницы