Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Использование динамических геометрических моделей



 

Подвижные геометрические модели

 

Подвижные геометрические модели в настоящее время широко используются в преподавании геометрии при открытии понятий, теорем и доказательств. Например, для демонстрации смежных, вертикальных углов, высот, медиан, биссектрис треугольника, параллелограмма, с помощью моделей удобно иллюстрировать движения на плоскости (поворот, параллельный перенос, осевую и центральную симметрию). Гораздо реже используются подвижные модели при изучении различных зависимостей между сторонами и углами треугольника, между величинами проекций и наклонных и т. п. Это изучение чаще всего ведется статично, т. е., рассматривается один частный случай, который характеризуется определенным чертежом. В сознании школьника вместо великого разнообразия случаев, которые описывает изучаемая зависимость, нередко запечатлевается ее «фотография» — застывший неподвижный чертеж. Создается своего рода противоречие между закономерностью общего характера и конкретным чертежом, который вынужден показывать один из частных случаев этой зависимости. Такое положение чревато многочисленными ошибками учеников [38].

Изображая вместо произвольной фигуры ее частный вид, ученик сам создает себе помехи в решении задач, ибо он невольно пользуется теми особенностями чертежа, которые не входят в условие задачи.

Например, изображая вместо произвольного прямоугольного треугольника равнобёдренный прямоугольный треугольник, ученик нередко использует при решении задачи навеянное чертежом дополнительное условие: острые углы треугольника равны 45°.

По-видимому, возникновению таких серьезных логических ошибок (неверное обобщение) содействует неправильная постановка преподавания геометрии. Иногда учителя, используя при доказательстве чертеж к теореме, не останавливаются на условиях, допускающих обобщение, и ученики невольно усваивают такое «правило»: по одному чертежу можно судить об общих закономерностях. Естественно поэтому, что при решении задач они стремятся брать наиболее «удобные» случаи. Конечно, говоря об условиях, позволяющих высказать общий вывод при рассмотрении одного чертежа, мы в известной мере нейтрализуем стремление учеников к «удобным» случаям. Но этого мало: необходимо также устранять причины, приводящие к ошибкам.

Как показал опыт, результаты в этом отношении обеспечивает изучение планиметрических зависимостей на подвижных моделях своего рода «подвижных чёртежах» [38].

У многих учащихся отсутствует правильное представление о размерах углов. Говоря об угле в 30°, чертится угол в 50° и т. п. Недостаток глазомера, отсутствие навыка в обращении с ходовыми углами значительно осложняет работу по решению задач, а также тормозит дальнейшую практическую деятельность учащихся [7].

Для развития у учащихся правильных навыков рекомендуется во время изучения углов, построения их, вывесить в классе на небольшой срок (неделю) образцы часто встречающихся в практике углов: 30°, 45°, 60°, 135°. (см. рис. 4.)

 

Рис. 4. Образцы часто встречающихся углов

 

Модели могут быть двух типов: деревянные и картонные.

Ученику дома предлагается изготовить набор небольших моделей различных углов, наклеить их на листе, сделать надписи, поместить в конверт.

Интерес учащихся 7 класса вызывает планиметрическая модель, которая иллюстрирует доказательство теоремы о сумме внутренних углов треугольника.

Углы 1 и 3 треугольника подвижные. Для того чтобы учащиеся выдвинули гипотезу о сумме углов треугольника, учитель эти углы разворачивает на подвижной модели, так как показано на рис. 5

 

Рис. 5. Модель разворота подвижных углов

 

При изучении свойства хорды: хорда, не проходящая через центр круга, меньше диаметра, проведенного в том же круге.

 

 

Рис. 6. Модель для изучения свойств хорды

Можно использовать следующую подвижную модель. Модель представляет собой лист картона, на котором начерчена окружность. Вдоль дуги АВD может передвигаться точка В (пуговица) (рис.6). При движении точки В по дуге окружности образуются различные треугольники, обладающие одной общей особенностью, - две стороны (радиусы) не меняют своей длины. Вспоминая свойство отрезка, приходим к выводу, что любая хорда, не проходящая через центр круга, меньше его диаметра. На модели, кстати, видно, почему приходится вводить ограничение «не проходящая через центр круга». В этом случае ломаная АОВ выпрямляется и свойство отрезка применить уже нельзя [38].

При изучении темы перпендикуляр и наклонная можно на модели показать их зависимость: перпендикуляр, проведенный из какой-либо, точки к прямой, меньше всякой наклонной проведенной из той же точки в этой прямой.

На листе картона (рис.7) начерчены две взаимно перпендикулярные линии АВ и KD. Точка С подвижная, АС - резинка. Передвигая «точку» С (пуговица), получаем различные прямоугольные треугольники, у которых меняющая свою длину наклонная АС служит гипотенузой, а катет АВ не меняется. Так как гипотенуза больше катета, отсюда следует утверждение теоремы.

 

 

При доказательстве признака параллелограмма (Диагональ параллелограмма делит его на два равных треугольника) можно использовать следующую модель [38]:

Параллелограмм (рис. 8), сделанный из деревянных реечек. Диагональ ВС - резинка, точки А, В, С и D - оси вращения.

При любых положениях модели треугольники АВС и BDC равны друг другу.

При изучении зависимости между дугой окружности и хордой (Большая дуга стягивается большей хордой, большая хорда стягивает большую дугу). Можно использовать следующую модель: на листе картона начерчена половина окружности АСК (рис. 9). Так как равные дуги стягиваются равными хордами и наоборот, то, не теряя общности рассуждений, будем откладывать, сравниваемые хорды и дуги, из точки А. По дуге ВК, могут передвигаться подвижные точки С и Е. Хорды АС и АЕ резинки, радиусы ОС и ОА – нити [38].

 

 

При движении модели видно, что если увеличивать дугу, то и стягивающая ее хорда увеличивается (резинка растягивается) и, обратно, увеличение хорды вызывает увеличение дуги. Но это можно не только показать, но и доказать. Каковы бы ни были хорды АС и АЕ, через точки С и Е можно провести прямую (накладываем на точки С и Е прямую стержень, на рисунке он показан пунктиром). Тогда можно видеть, что АЕ больше АС (наклонная, имеющая большую проекцию). Так как дуга АЕ также больше дуги АС и так как это положение модели мы могли получить, либо увеличивая дугу, либо увеличивая хорду, то отсюда и вытекает сделанный вывод. Рассматривая одно из положений модели, приходим к формулировкам учебника.

После того как ученики познакомятся со вписанными углами, можно объяснить тот факт, что перпендикуляр АО будет все время находиться по одну сторону от наклонных АЕ и АС при любых положениях точек С и Е. Этот факт, наблюдаёмый на модели непосредственно, объясняется тем, что вписанный угол АСЕ опирается на дугу, большую полуокружности, и поэтому он всегда тупой, а высота, опущенная в тупоугольном треугольнике из вершины острого угла, всегда лежит вне его [38].

Можно разобрать такую задачу с использованием модели: доказать, что если медиана треугольника равна половине основания, то этот треугольник прямоугольный.

Используем для иллюстрации условия той задачи модель смежных углов (рис. 10). От точки А откладываем равные отрезки АВ, АС и АD), в точках, С и D просверливаем отверстия и прикрепляем резинки СВ и СD.

Доказательство получаем, замечая, что при любом положении модели треугольники АВС и АСD равнобедренные.

После изучения вписанных углов можно разобрать и другое доказательство, основанное на том, что через точки В, С и D при любом положении подвижной модели можно провести окружность с центром в точке А [38].

В случаях, когда доказательство по модели было по каким-то причинам неудобно, все равно изучаемую зависимость мы наблюдали на модели, а уже затем переходили к чертежу – фиксированному положению этой модели.

Для теоремы Пифагора можно использовать следующую модель.

Картонную модель «египетского» треугольника (а = 3; 6 = 4; с=5). С построенными квадратами на его сторонах.

Приведём лишь небольшую деталь в порядке демонстрации этой модели.

Желательно показать модель не всю сразу в развёрнутом виде, а постепенно, так, как производится построение: «Построим квадрат на стороне треугольника а» (и из-за треугольника, обращённого к учащимся, показывается квадрат с площадью, разграфлённой на клетки). Так последовательно появляются все три квадрата. Загибание квадратов за плоскость треугольника требует широких швов присоединения квадратов, что снижает демонстративную ценность прибора. Поэтому целесообразно сохранять картонную модель теоремы Пифагора в более глубокой коробке, вынимание модели производить постепенно, отчего квадраты будут появляться из футляра последовательно: с площадью 32; 42; 52 [38].

При изучении суммы углов треугольника и свойство внешнего угла треугольника можно использовать модели, где имеются накладные углы, которые равны основным углам. Подробно использование таких моделей можно посмотреть далее в опытном преподавании.

Еще одну группу динамических моделей образует группа наглядных пособий, которая называется геометрическим конструктором.

Рассмотрение подвижных моделей следует сочетать с созданием мысленных подвижных образов. Например, решая задачу на построение треугольника по одной заданной стороне, можно мысленно убедиться, что решений здесь бесконечное множество. Достаточно представить в уме подвижную вершину, противоположную данной стороне, чтобы убедиться, что существует множество различных треугольников, имеющих одно и то же основание. Некоторые случаи различного положения вершины можно фиксировать мелом на доске [7].

Мысленное (а затем в случае необходимости фактическое) движение осуществляется, например, когда ученикам предлагается опознать, какие фигуры являются симметричными относительно оси (относительно точки), какие нет.

Геометрический конструктор

 

Как уже было сказано, к ним относятся шарнирные палочки, шпильки и так далее. Шарнирные модели демонстрируют виды углов (острые, тупые, прямые; вертикальные, смежные; углы, образованные при пересечении двух параллельных прямых третьей и др.) [38]

При знакомстве с углом существенным является представить себе правильно, что эта фигура характеризует степень отклонения угла. В частности такого угла может и не быть, в этом случаи лучи совпадают и угол равен 0. В то же время учащемуся трудно уяснить процесс непрерывного изменения угла. При использовании раздвижной шарнирной модели это явление становится наглядным и очевидным.

Опишем следующий порядок использования такой модели. Сперва учитель показывает некоторый угол, медленно уменьшает его до нуля, затем увеличивает до угла больше 900. Учащиеся во время демонстрации делают зарисовки в тетради и видят множество углов, среди которых, заданный является частным случаем. Полезно также показать, что удлинение стороны угла не изменяет его величины, это можно сделать, если растянуть или сдвинуть штабики (рис.11), образующие стороны угла [7].

Шарнирные подвижные модели углов встречаются либо набором моделей, либо в виде отдельных пособий. Недостатками модели являются:

1. Плохая конструкция муфты, дает грубое представление геометрическому образу-прямой линии.

2. Неудачный шарнир не позволяет образовать ни малых углов, ни нулевого положения.

3. Модель искажает понятие вершины угла.

Но это можно разрешить, если использовать вместо планки металлическую трубку и стержни, входящие в них [7].

Другие шарнирные модели из набора восьми моделей показывают смежные, вертикальные углы, углы при параллельных прямых и др. Эти модели также найдут себе применение для того, чтобы помочь учащимся выявить динамическую сущность вопросов.

Фигура треугольника настолько проста для представления и настолько знакома учащимся из окружающей обстановки, что не нуждается ни в другом изображении, кроме чертежа. Речь может идти иллюстрации на моделях преобразования треугольника из одного вида в другой. В этом смысле чертежи указывают лишь, очень небольшое количество образов; один вид переходит в другой разрывно, скачкообразно. На модели же форма изменяется непрерывно, и перед глазами учащихся проходит множество видов треугольников [7].

Вместе с углами и сторонами в треугольнике приходится изучать такие элементы, как медиана, перпендикуляр к стороне в её середине (медиатриса), высота и биссектриса. Было бы недостаточно выучить их определения и построить эти линии, в одном - двух треугольниках; необходимо пронаблюдать на подвижной модели, как располагается каждая из них в равнобедренном, правильном, прямоугольном, тупоугольном треугольниках и как они располагаются друг относительно друга.

 

При трансформации треугольника указанные элементы расположатся иначе: в прямоугольном треугольнике (рис. 12 б) высота 1 совпадёт со стороной (катетом), биссектриса остаётся левее медианы. По мере приближения треугольника к равнобедренному, внутренние элементы его сближаются и, наконец, совпадают: в равнобедренном треугольнике высота, медиана и биссектриса угла при вершине сливаются  (рис. 12 в). Перемещая вершину В вправо, мы увидим, что биссектриса переместится и станет вправо от медианы, а высота, постепенно смещаясь, займёт крайнее правое место по отношению к ним (рис. 12 г) [7].

Перечисленные сопоставления помогут глубже представить себе существо дела и свободнее разобраться в задачах, где встречаются различные построения; например, построить равнобедренный треугольник по медиане и высоте, опущенной на боковую сторону, и т. п.

В этом случае исследование задачи, указание на два возможных решения при остром и тупом угле при вершине легче даются учащимся, которые связывают положение внутренних линий в треугольнике с его формой. К данной модели полезно вернуться в VII классе после изучения темы «Углы в окружности» и предложить обосновать конструктивные предпосылки анализируемого пособия. Такого рода упражнение можно рассматривать как несложную задачу на доказательство по данным, полученным учащимися самостоятельно из рассмотрения прибора, а также как упражнение в анализе конструкции технического приспособления [7].

Большой интерес вызывают зарисовки и наблюдения движения некоторых элементов фигуры. В качестве примера можно привести демонстрацию шарнирного треугольника или треугольника, образованного резиновыми жгутами, в которых при постоянном основании перемещается вершина и изменяется высота фигуры или, наоборот, при сохранении высоты растягивается или сокращается основание, наконец, одновременно меняются оба элемента. После такого рода наблюдений функциональная зависимость периметра или площади от линейных элементов очевидна из геометрических представлений, а не только из формулы. Подобные размышления чрезвычайно способствуют математическому развитию.

Однако с демонстрацией моделей надо быть очень осторожным, так как приспособления, раскраска, разметка, могут отвлечь учащих от геометрической сущности [7].

 

Рис. 13 (а и б)

 

Наблюдения «замечательных точек треугольника» может, происходит следующим образом. Выводы существования единых точек пересечения медиан, «биссектрис, перпендикуляров из середин сторон проводятся по отношению к некоторому треугольнику; далее из того, что треугольник берётся произвольный, следует, что полученные свойства присущи треугольникам всех видов. Такого рода обобщение учащиеся иногда принимают на веру, не будучи до конца в этом убеждены. Оказывается, если после логического доказательства подтвердить вывод демонстрацией моделей, представления получаются более осмысленными (рис. 13 а, б) [7].

Вершины резиновой модели треугольника медленно перемещаются, в это время трансформируется самый треугольник, а металлические стержни, изображающие медианы, показывают общую точку пересечения трёх линий. Для случая перпендикуляров стержни закрепляются одним концом в середине стороны, а другой конец остаётся свободным.

Изображение биссектрис основано на свойстве равноудалённости их точек от сторон угла.

Приведем еще одну модель теоремы Пифагора, кроме описанной выше картонной модели.

 

Квадратный футляр содержит четыре равных прямоугольных треугольника, которые на рис. 14 ( а, б) сложены так, что свободными от них остаются два квадрата, построенные на катетах треугольников [7].

Другая конфигурация вкладышей-треугольников оставляет открытой площадь квадрата на гипотенузе.

Таким образом, модель наглядно демонстрирует, как из одной и той же площади квадрата-футляра два раза отнималась одинаковая площадь четырёх треугольников, вследствие чего оставались равные площади. А так как последние представлялись в одном случае в виде суммы площадей квадратов, построенных на катетах, а в другом - квадратом на гипотенузе, то и получалась модель для иллюстрации связи на основании теоремы Пифагора.

Особенно удобно демонстрировать сразу два таких прибора с указанными построениями.

Общепринятое геометрическое доказательство теорему после приведённых наблюдений проводится только при помощи чертежа.

Многолетний опыт и отзывы учителей убеждают, что небольшая затрата времени на демонстрацию пособий окупает себя вполне [7].

Следует отметить еще один вид наглядных пособий, который может применятся в процессе изучения некоторых тем курса планиметрии это модели из полосок, конструирование фигур из бумаги, перегибание листа бумаги.

 


Поделиться:



Последнее изменение этой страницы: 2020-02-17; Просмотров: 49; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.044 с.)
Главная | Случайная страница | Обратная связь