Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Глава I. Теоретические основы изучения моделирования текста задачи как средства развития математического мышления младших школьников



Содержание

 

Введение

Глава I. Теоретические основы изучения моделирования текста задачи как средства развития математического мышления младших школьников

Мышление как психический процесс

Особенности математического мышления младших школьников

Основные методы и приемы работы с задачей в начальной школе

Модель текста задачи как основа наглядно-образного мышления младших школьников

Выводы по первой главе

Глава II. Изучение моделирования текста задачи как средства развития математического мышления младших школьников

Характеристика выборки и методов исследования

Анализ результатов констатирующего эксперимента

Рекомендации для педагогов с целью уменьшения трудностей при решении задач младшими школьниками

Выводы по второй главе

Заключение

Список использованной литературы

Приложение

 


Введение

 

Математика сегодня - это одна из жизненно важных областей знания современного человечества, необходимая для существования человека в цивилизованном обществе. Широкое использование техники, в том числе и компьютерной, требует от индивида определенного минимума математических знаний и представлений. Существуют различные взгляды на объем и качество этого необходимого для социализации минимума. Проблема создания оптимального курса математики для общеобразовательной школы более чем актуальна. На сегодняшний день существует не менее пятнадцати учебников по математике для начальных классов, и почти все они рекомендованы Министерством образования и науки РФ к использованию в учебном процессе.

Последнее десятилетие XX в. характеризуется значимыми изменениями в подходах к определению целей начального математического образования. Эти изменения были порождены сменой приоритетных целей обучения: их обусловленностью на современном этапе проблемой воспитания личности ребенка на основе личностно-ориентированного деятельностного подхода [21]. С этой позиции целесообразным будет тот курс математики для младших школьников, который позволял бы средствами данного предмета реализовать идею развивающего обучения, и в то же время обеспечивал усвоение соответствующих знаний и умений, готовил и позволял бы уже с первых шагов творчески использовать их при решении разнообразных задач как практического, так и теоретического характера.

Базовым положением концепции является положение о том, что начальное звено в системе школьного образования обладает своей собственной непреходящей ценностью, и поэтому обязано предоставить ребенку возможность и условия самореализации в тех видах деятельности, которые являются ведущими в этом возрасте. Одной из неотложных задач педагогики является проблема качественного усовершенствования математического образования вообще, как в средней, так и в начальной школе. Судьба математической подготовки прежде всего зависит от того, как будет поставлено это дело именно в первые четыре года обучения в школе. Тому имеются серьезные психологические основания. По действующим ныне программам на изучение математики в начальной школе отводится около 800 уроков, что составляет почти 40% времени, отводимого на эту дисциплину за всю среднюю школу.

Обучение решению текстовых задач является ключевой проблемой в течение всего курса обучения математики, и это подтверждается результатами Единого Государственного Экзамена по математике. Менее 50% детей справляются с решением текстовых задач. Тем более важно начать обучение решению текстовых задач в начальных классах [3].

Актуальность исследования обусловлена необходимостью определения оптимальных условий эффективного усвоения знаний и развития мышления школьников. Одним из направлений в решении этой проблемы является разработка и внедрение в учебный процесс новых методов обучения, основанных на изучении психологических закономерностей взаимосвязи процессов усвоения знаний и развития мышления с учетом специфики конкретных учебных дисциплин. В настоящее время в педагогической психологии достаточно глубоко изучены общие механизмы мышления в процессе усвоения, такие как анализ, синтез, обобщение, абстрагирование и другие мыслительные операции [17]. В то же время существует сравнительно мало исследований, направленных на выявление особенностей и механизмов мыслительной деятельности учащихся при изучении ими конкретных учебных дисциплин, что является важным для решения проблемы совершенствования методов обучения, разработки новых методов, построенных в соответствии с психологическими закономерностями мышления и его особенностями, определяемыми спецификой учебного предмета.

Вопросами изучения и развития мышления младших школьников занимались Выготский Л.С., Леонтьев А.Н., Немов Р.С., Никольская И.Л., Рогов Е.И., Рубинштейн С.Л., Эльконин Д.Б., Петрушин В.И.. Назайкинский Е.В., Михайлова М.А.

Исходя из вышеперечисленных фактов, мы сформулировали тему нашего исследования: «Моделирование текста задачи как средство развития математического мышления младших школьников»

Объектом нашего исследования является решение текстовых задач.

Предмет исследования - моделирование текста задачи как средство развития математического мышления младших школьников.

Цель исследования - выявить методические особенности моделирования текста задачи как средства развития математического мышления младших школьников.

Задачи исследования:

1. Проанализировать литературу по теме исследования.

2. Дать характеристику основным понятиям работы.

.   Выявить и охарактеризовать методические особенности моделирования текста задачи как средства развития математического мышления младших школьников.

4. Провести исследование.

5. Разработать методические рекомендации для педагогов с целью уменьшения трудностей при решении задач младшими школьниками.

Гипотеза исследования - мы предполагаем, что использование метода моделирования при решении задач оказывает положительное влияние на развитие математического мышления младших школьников.

В процессе исследования были использованы следующие методы и приемы: анализ теоретических источников по заявленной теме, анализ программ и методических пособий, анализ учебников, эксперимент.

Структура работы: введение, две главы, заключение, список использованной литературы.


Глава I. Теоретические основы изучения моделирования текста задачи как средства развития математического мышления младших школьников

Выводы по первой главе

 

Проанализировав литературу по теме исследования, мы можем сделать следующие выводы:

) по мнению С.Л. Рубинштейна, в качестве основного предмета психологического исследования мышление выступает как процесс, как деятельность. Результаты мыслительной деятельности - понятия, знания - сами включаются в процесс мышления, обогащают его и обуславливают его дальнейший ход, возникая в результате мышления, понятия сами включаются в него. Мышление совершается в понятиях. Процесс мышления есть одновременно и движения знания в нем, именно это составляет содержательную сторону мышления.

2) вслед за Л.С. Рубинштейном мы будем различать наглядно действенное мышление и наглядно-образное мышление. Наглядно-образное мышление характеризуется опорой на представления. Наглядно-образное мышление характерно для дошкольника и младшего школьника. Наглядно-действенное мышление - вид мышления, опирающийся на непосредственное восприятие предметов, реальное преобразование в процессе действий с предметами. Наглядно-образное мышление - вид мышления, характеризующийся опорой на представления и образы; функции образного мышления связаны с представлением ситуаций и изменений в них, которые человек хочет получить в результате своей деятельности, преобразующей ситуацию. Очень важная особенность образного мышления - становление непривычных, невероятных сочетаний предметов и их свойств. В отличие от наглядно-действенного мышления при наглядно-образном мышлении ситуация преобразуется лишь в плане образа.

3) логическое мышление определяет общую стратегию процесса познавательной деятельности в соответствии с основной структурой объектов; широкий смысловой контекст, внутри которого осуществляется наглядно - действенное и наглядно - образное мышление. Его корни лежат в практике повседневного общения ребенка с взрослыми, в конкретных видах активной деятельности самого ребенка, его играх, бытовой деятельности. Поэтому развитие логического мышления - это одна из важных задач начального обучения. Умение мыслить логически, выполнять умозаключения без наглядной опоры, сопоставлять суждения по определенным правилам - это необходимое условие для успешного освоения учебного материала.

) научить детей решать задачи - значит научить их устанавливать связи между данными и искомым и в соответствии с этим выбрать, а затем и выполнить арифметические действия. Для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.

) структуру задачи можно представить с помощью различных моделей. Все модели принято делить на: предметные (вещественные); графические; символические. Психологи и многие математики рассматривают процесс решения задачи как процесс поиска подходящей модели и её преобразования. Каждая модель выступает как одна из форм отображения сущности (структуры) задачи, а преобразование её идет по пути постепенного обобщения, абстрагирования и, в конечном результате, построения её математической модели.

 


Рекомендации для педагогов с целью уменьшения трудностей при решении задач младшими школьниками

 

Обучение решению задач - сложная методическая проблема - вызывает вопросы не только у учителей начальной школы, но и у предметников, которые работают в старших классах.

За последние 15-20 лет методические подходы к вопросу о последовательности изучения арифметических действий и обучения младших школьников решению задач значительно изменились. Общепринятый ныне подход: знакомить детей с арифметическими действиями и, соответственно, с простейшими приемами вычислений следует раньше, чем начинать обучение решению задач. Последовательность при этом следующая.

-й этап. Знакомить со смыслом арифметических действий на основе теоретико-множественного подхода.

-й этап. Обучать описанию этих действий на языке математических знаков и символов (выбор действия и составление математических выражений соответствуют предметным действиям).

-й этап. Обучать простейшим приемам арифметических вычислений (пересчет элементов количественной модели описываемого множества, присчитывание и отсчитывание по 1, сложение и вычитание по частям и др.).

-й этап. Знакомить с задачей и обучать решению задач (причем цель решения задачи - это выбор действия и вычисление результата).

Как видно, вся методика, реализуемая на 1-3-м этапах, сводится к подготовительной работе, цель которой подготовить детей к обучению решению задач.

Математическая модель - это описание какого либо процесса на математическом языке. Одной из основных задач школьного курса математики является раскрытие перед учащимися трех этапов формирования математического знания: построение математической модели некоторого фрагмента реальной действительности; изучение математической модели и приложение полученных результатов к реальному миру.

Любую задачу можно рассматривать как словесную модель некоторой практической ситуации с требованием дать количественную характеристику какого-либо компонента или установить наличие отношения между компонентами этой ситуации.

Наибольшую трудность для учащихся в решении задачи представляет перевод текста с естественного языка на математический, т.е. запись решения. Для облечения поиска решения задачи детей необходимо учить пользоваться вспомогательными моделями: предметами, схемами, таблицами, рисунками. Для установления отношений между величинами, данными и искомыми в задаче, удобно использование в качестве модели линейных схем, которые являются одновременно краткой записью задачи. Еще до знакомства с задачей учащихся нужно учить устанавливать соответствие между предметными, текстовыми, схематическими и символическими моделями, которые они смогут использовать для интерпретации текста задачи. Тогда процесс решения задачи можно рассматривать как переход от одной модели к другой: от словесной модели реальной ситуации, представленной в задаче, к вспомогательной, от нее - к математической. Такие модели в сочетании с заданиями на сравнение, выбор, преобразование, конструирование способствуют формированию умения решать задачи. Например, задания на подбор схемы к тексту задачи, подбор выражения к рисунку, преобразование условия (вопроса) задачи в соответствии с изменением решения и наоборот, и т.п. Использование вспомогательных моделей является средством, которое помогает младшим школьникам усвоить многие математические понятия.

Таким образом, чтобы решить задачу, надо построить её математическую модель, но помочь в этом могут другие модели, называемые вспомогательными.

Уровень овладения моделированием должен занимать особое и главное место в формировании умения решать задачи. Обучение моделированию необходимо вести целенаправленно, соблюдая ряд условий.

Во-первых, все математические понятия, используемые при решении задач должны изучаться с помощью моделей.

Во-вторых, должна вестись работа по усвоению знаково-символического языка, на котором строится модель. При этом ученик осознает значение каждого элемента модели, осуществляя переход от реальности (предметной ситуации) к модели, и наоборот, от модели к реальности.

В-третьих, необходимый этап обучения - освоение моделей тех отношений, которые рассматриваются в задачах.

Только освоив модель отношений (т.е. осознав суть этого отношения), учащийся научится использовать её как средство выделения сущности любой задачи, содержащей это отношение.


Выводы по второй главе

 

На данном этапе нашего исследования мы проводили констатирующий эксперимент.

Экспериментальная работа проводилась в 1 четверти 2008-2009 учебного года в 3 «а» и в 3 «б» классах средней общеобразовательной школы №19 Железнодорожного района г.Красноярска. В исследовании принимали участие 40 человек. Оба класса работают по программе «Школа России».

3 «а» класс - работа происходит с задачами в цифровой форме.

«б» класс - при работе с задачами используется метод моделирования и разнообразные наглядные пособия.

«а» - контрольная группа (20 человек). 3 «б» - экспериментальная группа (20 человек).

Цель эксперимента - выявить уровень развития математического мышления младших школьников.

Для достижения цели нашего исследования мы использовали следующие методики:

) методика, разработанная Л.Ф. Тихомировой,

) решение двух текстовых задач.

Данные, полученные в результате эксперимента, проанализированы.

В контрольной группе высокий уровень развития математических способностей имеет 5% человек, выше среднего - 10% человек, средний уровень - 50% учащихся, уровень ниже среднего - 25% человек и низкий уровень развития математического мышления - 10% человек. В экспериментальной группе высокий уровень развития математических способностей имеют 15% человек, выше среднего - 40% человек, средний уровень - 25% учащихся, уровень ниже среднего - 15% человек и низкий уровень развития математического мышления - 5% человек.

Явно видно, что в экспериментальной группе преобладает уровень развития математического мышления выше среднего, в то время как в контрольной - средний уровень развития математического мышления.

В контрольной группе в записи условия задачи допущено 50% ошибок, в решении задач - 50% ошибок, в наименовании - 30% ошибок, при записи ответа - 50% ошибок. В экспериментальной группе в записи условия задачи допущено 5% ошибок, в решении задач - 15% ошибок, в наименовании - 5% ошибок, при записи ответа - 10% ошибок.

Явно видно, что в контрольной группе доминирует количество ошибок, допущенных при записи условий задач, что в свою очередь обеспечило 50% ошибок в решении при записи ответа.

Итак, на основании полученных данных мы можем сделать следующие выводы:

) контрольная группа характеризуется преобладанием среднего уровня развития математического мышления и доминированием 50% ошибок, допущенных при записи условий задач, что в свою очередь обеспечило 50% ошибок в решении при записи ответа

) экспериментальная группа характеризуется преобладанием уровня развития математического мышления выше среднего, очень низким количеством, допускаемых ошибок.

Следовательно, наша гипотеза о том, что использование метода моделирования оказывает положительное влияние на развитие математического мышления младших школьников, получила подтверждение.

 


Заключение

 

Само понятие образного мышления подразумевает оперирование образами, проведение различных операций (мыслительных) с опорой на представления. Детям дошкольного возраста (до 5, 5 - 6 лет) доступен именно данный тип мышления. Они еще не способны мыслить абстрактно (символами), отвлекаясь от реальности, наглядного образа. Поэтому усилия здесь должны быть сосредоточены на формировании у детей умения создавать в голове различные образы, т.е. визуализировать. Часть упражнений на развитие способности визуализации описаны в разделе по тренировке памяти. Мы не стали повторяться и дополнили их другими.

Примерно в возрасте 6 - 7 лет (с поступлением в школу) у ребенка начинают формироваться два новых для него вида мышления - словесно-логическое и абстрактное. Успешность обучения в школе зависит от уровня развития этих типов мышления.

Недостаточное развитие словесно-логического мышления приводит к трудностям при совершении любых логических действий (анализа, обобщения, выделения главного при построении выводов) и операций со словами. Упражнения по развитие этого вида мышления направлены на формирования у ребенка умения систематизировать слова по определенному признаку, способности выделять родовые и видовые понятия, развитие индуктивного речевого мышления, функции обобщения и способности к абстракции. Надо отметить, что чем выше уровень обобщения, тем лучше развита у ребенка способность к абстрагированию.

Недостаточное развитие абстрактно-логического мышления - ребенок плохо владеет абстрактными понятиями, которые невозможно воспринять при помощи органов чувств (например, уравнение, площадь и т. д.). Функционирование данного типа мышления происходит с опорой на понятия. Понятия отражают сущность предметов и выражаются в словах или других знаках.

Обычно этот тип мышления только начинает развиваться в младшем школьном возрасте, однако в школьную программу уже включаются задания, требующие решения в абстрактно-логической сфере. Это и определяет трудности, возникающие у детей в процессе овладения учебным материалом. Мы предлагаем упражнения, которые не просто развивают абстрактно-логическое мышление, но и по своему содержанию отвечают основным характеристикам данного типа мышления.

Методика обучения по математики в младших классах должна быть направлена на развитие мультисенсорных интеграций, а потому на уроках должны использоваться игровые моменты с максимальным включением сенсорики ребенка в процесс познавательной деятельности, что приведет к активизации развития образного компонента мыслительной деятельности. Обучение, предусматривающее одновременно и активизацию образного компонента мыслительной деятельности, и развитие сенсорики, не только окажет стимулирующее воздействие на развитие вербального мышления, но и будет способствовать развитию творческого мышления, формировать индивидуальные особенности ребенка, пробуждать интеллектуальные эмоции.

Методическая система математического развития ребенка младшего школьного возраста, предоставляющая каждому ребенку условия для индивидуального продвижения в математическом содержании будет способствовать практическому созданию единой системы обучения математике и достижению оптимально возможного для ребенка, соответствующего возрастному этапу уровня математического развития.

Для решения данной проблемы требуются обширные исследования. Мы проводили теоретический анализ литературных источников и педагогический эксперимент. Полученные данные подтвердили актуальность изучения моделирования текста задачи как средства развития математического мышления младших школьников.

В ходе работы была достигнута цель исследования - были выявлены и показаны методические особенности моделирования текста задачи как средства развития математического мышления младших школьников.

При достижении цели были решены поставленные задачи:

. Была изучена психолого-педагогическая и методическая литература по проблеме исследования.

. Была дана характеристика основным понятиям работы.

. Были выявлены и охарактеризованы методические особенности моделирования текста задачи как средства развития математического мышления младших школьников.

. Было проведено исследование.

. Были разработаны методические рекомендации для педагогов с целью уменьшения трудностей при решении задач младшими школьниками.

Экспериментальная работа проводилась в 1 четверти 2008-2009 учебного года в 3 «а» и в 3 «б» классах средней общеобразовательной школы №19 Железнодорожного района г.Красноярска. В исследовании принимали участие 40 человек. Оба класса работают по программе «Школа России».

Данные, полученные в результате эксперимента, проанализированы.

В контрольной группе высокий уровень развития математических способностей имеет 5% человек, выше среднего - 10% человек, средний уровень - 50% учащихся, уровень ниже среднего - 25% человек и низкий уровень развития математического мышления - 10% человек. В экспериментальной группе высокий уровень развития математических способностей имеют 15% человек, выше среднего - 40% человек, средний уровень - 25% учащихся, уровень ниже среднего - 15% человек и низкий уровень развития математического мышления - 5% человек.

Явно видно, что в экспериментальной группе преобладает уровень развития математического мышления выше среднего, в то время как в контрольной - средний уровень развития математического мышления.

В контрольной группе в записи условия задачи допущено 50% ошибок, в решении задач - 50% ошибок, в наименовании - 30% ошибок, при записи ответа - 50% ошибок. В экспериментальной группе в записи условия задачи допущено 5% ошибок, в решении задач - 15% ошибок, в наименовании - 5% ошибок, при записи ответа - 10% ошибок.

Явно видно, что в контрольной группе доминирует количество ошибок, допущенных при записи условий задач, что в свою очередь обеспечило 50% ошибок в решении при записи ответа.

Итак, на основании полученных данных мы можем сделать следующие выводы:

) контрольная группа характеризуется преобладанием среднего уровня развития математического мышления и доминированием 50% ошибок, допущенных при записи условий задач, что в свою очередь обеспечило 50% ошибок в решении при записи ответа

) экспериментальная группа характеризуется преобладанием уровня развития математического мышления выше среднего, очень низким количеством, допускаемых ошибок.

Следовательно, наша гипотеза о том, что использование метода моделирования оказывает положительное влияние на развитие математического мышления младших школьников, получила подтверждение.

Обучение моделированию необходимо вести целенаправленно, соблюдая ряд условий.

Во-первых, все математические понятия, используемые при решении задач должны изучаться с помощью моделей.

Во-вторых, должна вестись работа по усвоению знаково-символического языка, на котором строится модель. При этом ученик осознает значение каждого элемента модели, осуществляя переход от реальности (предметной ситуации) к модели, и наоборот, от модели к реальности.

В-третьих, необходимый этап обучения - освоение моделей тех отношений, которые рассматриваются в задачах.

Только освоив модель отношений (т.е. осознав суть этого отношения), учащийся научится использовать её как средство выделения сущности любой задачи, содержащей это отношение.

 


Список использованной литературы

 

1.Айдарова Л.И. Психологические проблемы обучения младших школьников. - М., 1978

2.Актуальные проблемы методики обучения математике в начальных классах /Под ред. М.И. Моро, A.M. Пышкало. - М., 1977.

3.Амоношвили Ш.А., Загвязинский В.И. Паритеты, приоритеты в теории и практике образования//«Педагогика, 2000. - №2. - С.3-7

4.Аргинская И.И. Обучаем по системе Л.В. Занкова: Книга для учителя. - М.: Просвещение, 1991.

5.Баранова И.В., Борчугова З.Г. Математика, 4 класс. Пробный учебник. М., Просвещение, 1968.

6.Бархаев Ю. П. Особенности формирования навыков в учебной деятельности.- Харьков: " Вестник Харьк. ун-та", 1978. - №171. С. 46-53.

7.Боданский Ф.Г. Развитие математического мышления у младших школьников // Развитие психики школьников в процессе учебной деятельности. Сб. науч. трудов. - М., 1983. - С. 115-125.

8.Брушлинский А.В. Психология мышления и проблемное обучение. - М., 1985.

9.Возрастная и педагогическая психология //Под ред. М.В. Гамезо. - М.: Просвещение. - 1984. 260 с.

10.Возрастная и педагогическая психология. // Под ред. Петровского А.В. - М, 1979 г.

11.Возрастные возможности усвоения знаний (младшие классы школы) / Под ред. Д.Б. Эльконина, В.В. Давыдова. - М., 1966.

12.Возрастные и индивидуальные возможности образного мышления учащихся / Под ред. И.С. Якиманской. - М., 1989.

13.Выготский Л.В. Педагогическая психология.- М- Педагогика 1991г. с.143-221, 137

14.Галанжина E.С. Некоторые аспекты развития образного мышления младших школьников. // Искусство в начальной школе: опыт, проблемы, перспективы. - Курск, 2001.

15.Гальперин П.Я. Актуальные проблемы возрастной психологии. - М.: Просвещение, - 1978. - 360 с.

16.Давыдов В.В. Основные проблемы развития мышления в процессе обучения //Хрестоматия по возрастной и педагогической психологии. В 2ч. - М., 1970

17.Давыдов В.В. Проблемы развивающего обучения; М.- Просвещение, 1988. -с.230

18.Дубровина И.В. Психология: Учебник для студентов средних педагогических учебных заведений. - М.: Издательский центр «Академия», 1999.

19.Елесина Г.Е., Мульдаров В.К. Особенности действий детей 6-7 лет при переходе от наглядно-действенного и образного мышления к мышлению о понятиях. //Психологическая наука и образование. - 1997. - №3. - С. 56-62.

20.Зак А.З. Различие в мыслительной деятельности младших школьников. - Воронеж, 2000.

21.Занков Л.В. Обучение и развитие (экспериментально-педагогическое исследование) // Избранные педагогические труды. - М., 1990.

22.Зимняя И.А. Педагогическая психология. - М.: Логос, 2001

23.Истомина Н.В. Методика обучения математике в начальных классах. - Ярославль, ЛИНКА - ПРЕСС, 1997

24.Кабанова-Меллер Е.Н. Психология формирования знаний и навыков у школьников. - М.: Изд-во АПН СССР, 1962

25.Калмыкова 3.И. Психологический анализ формирования понятия о типе задачи. - Известия АПН РСФСР, 1947, №12.

26.Кожабаев К.Б. О воспитательной направленности обучения математике в школе: Книга для учителя. - М.: Просвещение, 1988.

27.Крутецкий В.А. Психология математических способностей школьников. - М.: Просвещение, 1968.

28.Леонтьев А.Н. Избранные психологические произведения. В 2х тт. - М., 1983

29.Менчинская Н.А. Психологические вопросы развивающего обучения и новые программы. - Советская педагогика. - 1968. - №6. - С. 56-59.

30.Немов Р.С. Психология. Книга 1. Общие основы психологии. М. 1998

31.Нуралиева Г.В. Методика обучения математике в начальных классах: Учебное пособие для учащихся школьных отделений педагогических училищ. 2-е изд., исп. - Ставрополь: Ставропольсервисшкола, 1999.

32.Программы начальной школы. М., Просвещение, 1989.

33.Пышкало A.M., Давыдов В.В., Журова Л.Е. Концепция начального o6разования / Начальная школа. - 1992. - №7-8. - С. 23-36.

34.Рубинштейн С. Л.. Основы общей психологии. СПб., 1998.

35.Слепкань З.И. Психолого-педагогические основы обучения математике. - Киев, 1983.

36.Тихомирова Л.Ф., Басов А.В. Развитие логического мышления детей. - Ярославль: ТОО «Гринго», 1995

37.Фридман Л.М. Психолого-педагогические основы обучения математике в школе. - М., 1983.

38.Фройдентпаль Г. Математика как педагогическая задача: Ч. 1. Пособие для учителей / Под ред. Н.Я. Виленкина. - М., 1982.

39.Фуше А. Педагогика математики. - М., 1969.

40.Эльконин Д.Б. Психологическое развитие в детских возрастах. - М.: Просвещение. - 1995. - 247 с.

 


Приложение

 

Тестовые задания, используемые для диагностики логического мышления младших школьников:

1. Перед скобками слово, а в скобках - еще 5 слов. Найди 2 слова из написанных в скобках, которые наиболее существенны для слова, стоящего перед скобками. Запиши эти слова.

1) куб (углы, дерево, камень, чертеж, сторона)

2) деление (класс, делимое, карандаш, делитель, бумага)

3) озеро (берег, рыба, вода, рыболов, тина)

4) чтение (книга, очки, глаза, буква, луна)

5) игра (шахматы, игроки, штрафы, правила, наказания).

2. В проведенных словах буквы переставлены местами. Запишите эти слова.

1) упке

2) вцтеко

3) окамднри

4) лкбуинак

5) раяи

3. Даны 3 слова. Два первых находятся в определенной связи. Третье и одно из 5 слов, приведенных ниже, находятся в такой же связи. Найдите и запишите на листе это четвертое слово.

1) слагаемое: сумма = множители: ?

(разность, делитель, произведение, умножение, вычитание)

2) молния: свет = жара: ?

(солнце, трава, жажда, дождь, река)

3) волк: пасть = птица: ?

(воробей, гнездо, клюв, соловей, петь)

4) север: юг = ночь: ?

(утро, светло, день, вечер, сутки)

5) лес: деревья = библиотека: ?

(город, здание, книги, библиотекарь, театр)

6) школа: обучение = больница: ?

(доктор, ученик, лечение, учреждение, больной)

7) круг: окружность = шар: ?

(пространство, сфера, радиус, диаметр, половина)

8) холодно: горячо = движение: ?

(взаимодействие, покой, мяч, трамвай, идти)

9) птица: гнездо = человек: ?

(люди, рабочий, птенец, дом, разумный)

10) песня: композитор - самолет: ? (горючее, летчик, конструктор, аэродром).

4. Какие понятия в каждом из перечней является лишним? Выпиши его.

1) дуб, дерево, ольха, ясень

2) сложение, умножение, деление, слагаемое, вычитание

3) треугольник, отрезок, длина, квадрат, круг

4) холодный, горячий, теплый, кислый, ледяной

5) круг, квадрат, треугольник, прямоугольник, четырехугольник

Содержание

 

Введение

Глава I. Теоретические основы изучения моделирования текста задачи как средства развития математического мышления младших школьников

Мышление как психический процесс

Особенности математического мышления младших школьников

Основные методы и приемы работы с задачей в начальной школе

Модель текста задачи как основа наглядно-образного мышления младших школьников

Выводы по первой главе

Глава II. Изучение моделирования текста задачи как средства развития математического мышления младших школьников

Характеристика выборки и методов исследования

Анализ результатов констатирующего эксперимента

Рекомендации для педагогов с целью уменьшения трудностей при решении задач младшими школьниками

Выводы по второй главе

Заключение

Список использованной литературы

Приложение

 


Введение

 

Математика сегодня - это одна из жизненно важных областей знания современного человечества, необходимая для существования человека в цивилизованном обществе. Широкое использование техники, в том числе и компьютерной, требует от индивида определенного минимума математических знаний и представлений. Существуют различные взгляды на объем и качество этого необходимого для социализации минимума. Проблема создания оптимального курса математики для общеобразовательной школы более чем актуальна. На сегодняшний день существует не менее пятнадцати учебников по математике для начальных классов, и почти все они рекомендованы Министерством образования и науки РФ к использованию в учебном процессе.

Последнее десятилетие XX в. характеризуется значимыми изменениями в подходах к определению целей начального математического образования. Эти изменения были порождены сменой приоритетных целей обучения: их обусловленностью на современном этапе проблемой воспитания личности ребенка на основе личностно-ориентированного деятельностного подхода [21]. С этой позиции целесообразным будет тот курс математики для младших школьников, который позволял бы средствами данного предмета реализовать идею развивающего обучения, и в то же время обеспечивал усвоение соответствующих знаний и умений, готовил и позволял бы уже с первых шагов творчески использовать их при решении разнообразных задач как практического, так и теоретического характера.

Базовым положением концепции является положение о том, что начальное звено в системе школьного образования обладает своей собственной непреходящей ценностью, и поэтому обязано предоставить ребенку возможность и условия самореализации в тех видах деятельности, которые являются ведущими в этом возрасте. Одной из неотложных задач педагогики является проблема качественного усовершенствования математического образования вообще, как в средней, так и в начальной школе. Судьба математической подготовки прежде всего зависит от того, как будет поставлено это дело именно в первые четыре года обучения в школе. Тому имеются серьезные психологические основания. По действующим ныне программам на изучение математики в начальной школе отводится около 800 уроков, что составляет почти 40% времени, отводимого на эту дисциплину за всю среднюю школу.

Обучение решению текстовых задач является ключевой проблемой в течение всего курса обучения математики, и это подтверждается результатами Единого Государственного Экзамена по математике. Менее 50% детей справляются с решением текстовых задач. Тем более важно начать обучение решению текстовых задач в начальных классах [3].

Актуальность исследования обусловлена необходимостью определения оптимальных условий эффективного усвоения знаний и развития мышления школьников. Одним из направлений в решении этой проблемы является разработка и внедрение в учебный процесс новых методов обучения, основанных на изучении психологических закономерностей взаимосвязи процессов усвоения знаний и развития мышления с учетом специфики конкретных учебных дисциплин. В настоящее время в педагогической психологии достаточно глубоко изучены общие механизмы мышления в процессе усвоения, такие как анализ, синтез, обобщение, абстрагирование и другие мыслительные операции [17]. В то же время существует сравнительно мало исследований, направленных на выявление особенностей и механизмов мыслительной деятельности учащихся при изучении ими конкретных учебных дисциплин, что является важным для решения проблемы совершенствования методов обучения, разработки новых методов, построенных в соответствии с психологическими закономерностями мышления и его особенностями, определяемыми спецификой учебного предмета.

Вопросами изучения и развития мышления младших школьников занимались Выготский Л.С., Леонтьев А.Н., Немов Р.С., Никольская И.Л., Рогов Е.И., Рубинштейн С.Л., Эльконин Д.Б., Петрушин В.И.. Назайкинский Е.В., Михайлова М.А.


Поделиться:



Последнее изменение этой страницы: 2020-02-17; Просмотров: 108; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.112 с.)
Главная | Случайная страница | Обратная связь