Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Модель текста задачи как основа наглядно-образного мышления младших школьников



 

Мышление школьников при изучении математики строится не только на основе общих психологических механизмов и операций, адекватных усвоению научного знания, но и включает формирование специфических механизмов, моделирующих существенные признаки и способы описания познаваемых объектов, выраженные в использовании символьно-вербальных и символьно-формульных способов представления информации.

В общей системе обучения задачи играют особую роль. Через решение задач осуществляется необходимая связь теоретических знаний с практикой, умение решать задачи определяет степень обученности, общей подготовленности детей. В них заложены большие возможности для повышения общего и математического образования школьников: развитие смекалки, начал исследовательской работы, логического мышления. Раздел обучения решению задач считается наиболее трудным. И это естественно, т. к. решение задач вообще и математических в частности процесс творческий, требующий продуктивного подхода, проникновения в скрытые в каждой задаче связи и зависимости, которые зачастую могут быть необычными, нестандартными, а иногда уникальными [31].

Школа должна формировать у детей истинное умение решать задачи, которое заключается в способности решить любую задачу, доступного для данного возраста уровня трудности, если в ней отсутствуют незнакомые понятия и если для решения не требуется выполнить незнакомые операции.

Для начальной школы эти требования означают, что в тексте задачи каждое слово должно быть детям понятно и решение задач должно требовать выполнение изученных на данном этапе операций. Текстовые задачи являются тем богатейшим материалом, на котором будет решаться важнейшая задача преподавания математики - развитие мышления и творческой активности учащихся.

В соответствии с теорией поэтапного формирования умственных действий (П.Я. Гальперин), предлагается с самого начала обучения решению задач формировать у учащихся общее умение анализировать задачи.

Известно, что решение текстовых задач представляет большие трудности для учащихся. Известны и то, какой именно этап решения особенно труден. Это самый первый этап - анализ текста задачи.

По мнению Салминой Н.Г., которая считает, что «… задача всегда представляет собой некую модель явления или процесса, отражающую (в математической задаче) количественную сторону этого явления или процесса, выраженную через систему необходимых компонентов, функциональная зависимость между которыми и должна быть вскрыта путем анализа.»

Текст задачи - это рассказ о некоторых жизненных фактах:

У мальчика Димы в трех коробках лежали гвозди, винты и гайки…

Из листа бумаги вырезали треугольник…

Таня, Коля и папа отправились в поход…

Число яблок в корзине - двузначное…

В тексте важно все: и действующие лица, и их действия, и числовые характеристики. При работе с математической моделью задачи (числовым выражением или уравнением) часть этих деталей опускается. Но мы именно и учим умению абстрагироваться от некоторых свойств и использовать другие [27].

Умение найти и составить план решения задачи имеет решающее значение. Это умение вести рассуждение от «начала» и от «конца» задачи. Способ рассуждений от данных к искомым величинам называется синтетическим и, наоборот, от искомых (вопроса задачи) к данным (известным) величинам называется аналитическим. Возможно их комбинация - аналитико-синтетический способ рассуждений.

Синтетический способ характеризуется тем, что основным, направляющим вопросом при поиске плана решения задачи является вопрос о том, что можно найти по двум или нескольким известным в тексте задачи числовым значениям. По вновь полученным числовым значениям и другим известным в задаче данным вновь ищется ответ на вопрос, что можно узнать по этим значениям. И так до ответа на вопрос задачи. Суть этого способа состоит в вычленение учащимися простых задач из составной и их решение. Обучение делению составных задач помогает учащимся овладеть синтетическим способом рассуждений.

Аналитический способ рассуждения характеризуется тем, что рассуждения начинается от вопроса задачи. Выясняется, что нужно предварительно узнать, чтобы ответить на вопрос задачи. Выясняется, что для этого надо найти «что-то». Вновь ставится вопрос: а что нужно знать, чтобы найти это «что-то»? И т.д. до того, когда ответ на таким образом поставленный вопрос имеется в условии задачи. После таких рассуждений составляется план решения задачи [23].

Систематическая и целенаправленная работа по формированию у учащихся рассмотренных умений будет содействовать развитию их мышления.

Главная цель задач - развить творческое и математическое мышление учащихся, заинтересовать их математикой, привести к «открытию» математических фактов.

Прежде всего отметим, что научить учащихся решать задачи можно только в том случае, если у учащихся будет желание их решать, т.е. если задачи будут содержательными и интересными с точки зрения ученика. Поэтому задача учителя - вызвать у учащихся интерес к решению той или иной задачи. Одно бесспорно: наибольший интерес у учащихся вызывают задачи, взятые из окружающей жизни, задачи, связанные со знакомыми вещами, опытом. Важно показать детям, что от решения математической задачи можно получить такое же удовольствие, как от разгаданного кроссворда или ребуса. Либо использовать способы наглядно-образные, картинки, рисунки, графики.

Задачи не должны быть слишком легкими, но и не слишком трудными, т.к. ученики, не решив задачу или не разобравшись в решении, предложенном учителем, могут потерять веру в свои силы. В этом случае очень важно соблюсти меру помощи. Прежде всего учитель не должен знакомить учащихся с уже готовым решением. Подсказка должна быть минимальной.

Рассмотрим примеры решения таких задач, с тем чтобы выяснить особенности процесса их решения.

Задача 1. В трех ящиках 300 яблок. Число яблок первого ящика составляет половину числа яблок второго ящика и треть числа яблок третьего ящика. Сколько яблок в каждом ящике?

Решение. Эта задача является практической (текстовой). Для подобных задач никакого общего правила, определяющего точную программу их решения не существует. Однако, это не значит, что вообще нет каких-либо указаний для решения таких задач.

Обозначим количество яблок в первом ящике через х. Тогда во втором ящике было 2х яблок, в третьем - 3х. Следовательно, сложив все числа х+2х+3х мы должны получить 300 яблок. Получаем уравнение х+2х+3х=300. решив уравнение, найдем: х=50 яблок, 2х=100 яблок, 3х=150 яблок. Значит, в первом ящике было 50 я., во втором -100 я., в третьем -150 я. [25]

Проанализируем процесс приведенного решения задачи. Сначала мы определили вид задачи «текстовая задача», и, исходя из этого, возникла идея решения («составить уравнение»). Для этого, пользуясь весьма общими указаниями и образцами решения подобных задач, полученных на уроках («надо обозначить одно из неизвестных буквой, например х, и выразить остальные неизвестные через х, затем составить равенство из полученных выражений»), мы построили уравнение. Заметим, что эти указания, которыми мы пользовались, не являются правилами, ибо в них ничего не сказано, какое из неизвестных обозначить через х, как выразить остальные неизвестные через х, как получить нужное равенство и т.д. Все это делается каждый раз по-своему, исходя из условий задачи и приобретенного опыта решения подобных задач.

Полученное уравнение представляет собой уже стандартную задачу. Решив её, мы тем самым решили и исходную нестандартную задачу.

Смысл решения данной задачи состоит в том, что с помощью особого приема (составление уравнения) мы свели её решение к решению стандартной задачи.

Задача 2. В магазин «Цветы» привезли 30 желтых тюльпанов и столько же красных. Каждые 3 желтых тюльпана стоили 20 руб., а каждые 2 красных тюльпана стоили 30 руб. Продавец сложила все эти тюльпаны вместе и решила сделать букеты по 5 тюльпанов и продавать их по 50 руб. Правильно ли она рассчитала?

Решение. Найдем стоимость всех тюльпанов, если бы продавец не складывала тюльпаны вместе (реальную стоимость).

х30: 3+30х30: 2=650 руб.

Найдем стоимость тюльпанов в том случае, когда продавец сложила их по 5 в букеты и стала продавать по 50 руб. (предполагаемая стоимость).

(30+30): 5х50=600 руб.

Сравниваем реальную и предполагаемую стоимость тюльпанов 650 руб. > 600 руб. Обнаруживаем, что расчет продавца ошибочен, т.к. при сложении всех тюльпанов и продажи их по 5 шт. в букетах она теряет 50 руб.

Процесс решения этой задачи состоит в следующем: данную задачу мы разбили на такие подзадачи:

) нахождение реальной стоимости;

) нахождение предполагаемой стоимости;

) сравнение полученных стоимостей и вывод о расчете продавца.

Решив эти стандартные подзадачи, мы в конечном итоге решаем и исходную задачу [23].

Методика рассматривает несколько методов решения задач- алгебраический, арифметический, графический, практический, метод предположения, метод перебора. Они могут применяться как при решении стандартных задач, так и нестандартных.

Алгебраический метод решения задач развивает теоретическое мышление, способность к обобщению, формирует абстрактное мышление и обладает такими преимуществами, как краткость записи и рассуждений при составлении уравнений, экономит время. Арифметический метод решения также требует большого умственного напряжения, что положительно сказывается на развитии умственных способностей, математической интуиции, на формировании умения предвидеть реальную жизненную ситуацию. Часто встречаются задачи, которые можно решить методом перебора. При этом ученик как бы экспериментирует, наблюдает, сопоставляет факты и на основании частных выводов делает те или иные общие заключения. В процессе этих наблюдений обогащается его реально-практический опыт. Именно в этом и состоит практическая ценность задач на перебор. При этом слово «перебор» используется в смысле разбора всех возможных случаев, которые удовлетворяют условие задачи, показав, что других решений быть не может. Встречаются задачи, в которых алгебраический или арифметический метод недостаточно эффективен. В этом случае при поиске решения используется метод предположения [31].

Полноценное обучение математике невозможно без понимания детьми происхождения и значимости математических понятий, роли математики в жизни общества и в системе наук. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение и исследование вспомогательной модели, отражающей лишь какую-то сторону реальности и потому более простую, чем сама реальность. Математическая модель - это описание какого либо процесса на математическом языке. Одной из основных задач школьного курса математики является раскрытие перед учащимися трех этапов формирования математического знания: построение математической модели некоторого фрагмента реальной действительности; изучение математической модели и приложение полученных результатов к реальному миру. Основное содержание математики начальных классов составляют понятие натурального числа, действия с числами. С теоретико-множественных позиций количественное натуральное число является общим свойством класса конечных равномощных множеств, которые различны по своей сути, но все содержат одинаковое количество элементов. Каждый класс таких множеств может быть представлен каким то одним множеством, например, множеством палочек или точек, которые можно рассматривать как модели числа. В основе сложения чисел лежит операция объединения попарно - непересекающихся множеств, а в основе вычитания - удаление части множества. Поэтому при изучении сложения и вычитания чисел полезно выполнение предметных действий с совокупностями предметов, их интерпретация в виде графических и символических моделей, а затем запись числовым выражением [31]. При работе с разрядным числом необходимо использование различных моделей: палочек и пучков палочек, полосок, квадратов и другого математического счетного материала. Удобно изображение модели однозначных чисел в виде набора точек, а десятка, сотни - в виде треугольника (10 точек удобно располагать треугольником), двузначных чисел - в виде треугольников и точек, то есть числовой фигуры. Например, число 14 можно представить так:

 

 

При сложении и вычитании круглых чисел можно выполнять предметные действия с треугольниками или изображать их в тетради:

 

 

+                     =

Рис. 1


3 д + 2 д = 5 д.        30 + 20 = 50

 

При сложении и вычитании двузначных чисел:

 

 

-                                   =

Рис. 2

 

д 3 е - 3 д 2 е = 1 д 1 е      43 - 32 = 11

 

Анализируя аналогичные примеры, учащиеся сами сделают выводы: - при сложении единицы складывают с единицами, а десятки с десятками; при вычитании единицы вычитают из единиц, а десятки из десятков. Работая с такими моделями, учащиеся могут представить наглядно и «изобрести» любой вычислительный прием. Аналогично работа проводится и с трехзначными числами. Сначала внутри треугольника помещаем 10 маленьких треугольников, символизирующих десятки, затем, моделью сотни служит просто треугольник больших размеров. Если при выполнении вычислений возникает необходимость дробления сотни на десятки, то этот треугольник заполняется маленькими треугольниками.

В начальном курсе математики большое внимание уделяется решению задач. Любую задачу можно рассматривать как словесную модель некоторой практической ситуации с требованием дать количественную характеристику какого-либо компонента или установить наличие отношения между компонентами этой ситуации. Наибольшую трудность для учащихся в решении задачи представляет перевод текста с естественного языка на математический, т.е. запись решения. Для облечения поиска решения задачи детей необходимо учить пользоваться вспомогательными моделями: предметами, схемами, таблицами, рисунками [39]. Для установления отношений между величинами, данными и искомыми в задаче, удобно использование в качестве модели линейных схем, которые являются одновременно краткой записью задачи. Еще до знакомства с задачей учащихся нужно учить устанавливать соответствие между предметными, текстовыми, схематическими и символическими моделями, которые они смогут использовать для интерпретации текста задачи. Тогда процесс решения задачи можно рассматривать как переход от одной модели к другой: от словесной модели реальной ситуации, представленной в задаче, к вспомогательной, от нее - к математической. Такие модели в сочетании с заданиями на сравнение, выбор, преобразование, конструирование способствуют формированию умения решать задачи. Например, задания на подбор схемы к тексту задачи, подбор выражения к рисунку, преобразование условия (вопроса) задачи в соответствии с изменением решения и наоборот, и т.п. Использование вспомогательных моделей является средством, которое помогает младшим школьникам усвоить многие математические понятия.

Систематическое обучение решению математических задач предполагает не только представление об учебной задаче и её особенностях, но и выбор единой теоретической концепции собственно математического содержания. В курсе математики за основу взята теория измерения, которая разрабатывалась французским математиком Лебегом, а позднее была развита академиком Колмогоровым.

Основная задача школьного учебного предмета математики состоит в том, чтобы привести учащихся " к возможно более ясному пониманию концепции действительного числа". Основы этой концепции должны усваиваться детьми уже в начальной школе. Это значит, что детям с самого начала должно быть раскрыто общее основание всех видов действительного числа. Таким основанием является понятие величины [23].

Многообразие чисел, объединенных концепцией действительного числа, является конкретизацией понятия величины.

Усвоение детьми концепции действительного числа должно начинаться с овладения ими понятием величины и с изучения её общих свойств. Тогда все виды действительного числа могут быть усвоены детьми на основе конкретизации этих свойств. В таком случае, идея действительного числа будет присутствовать в обучении математике с самого его начала.

Понятие величины связано с отношением " равно", " больше", " меньше". Множество каких-либо предметов тогда претворяется в величину, когда устанавливаются критерии, позволяющие установить, будет ли А равно В, больше В или меньше В. В качестве примера математической величины В.Ф.Каган рассматривает натуральный ряд чисел, так как с точки зрения такого критерия, как положение, занимаемое числами в ряду, этот ряд удовлетворяет определенным постулатам и поэтому представляет собой величину. Совокупность дробей также претворяется в величину, а правильное установление критериев сравнения для множества иррациональных чисел (для претворения его в величину) составляет основу современного построения анализа.

Свойства величин раскрываются при оперировании человеком реальными длинами, объемами, грузами, промежутками времени и т.д. (или же при их выражении числами). Возможность организации реальных действий по преобразованию величин допускает введение соответствующего учебного материала уже в 1 -м классе.

В основу обучения математике положена концепция действительного числа. Однако, в отличие от обычной программы, в обучении предусматривается такой вводный раздел, при усвоении которого дети специально изучают генетически исходное основание последующего выведения всех видов действительного числа, а именно изучают понятие величины [27].

Структуру задачи можно представить с помощью различных моделей. Все модели принято делить на:

· предметные (вещественные);

·   графические;

·   символические.

К графическим моделям относят рисунок, условный рисунок, чертеж, схематический чертеж (или схему). В педагогической работе важное значение имеют предсхематические действия ребенка, результатом которых являются рисунок и условный рисунок.

Знаковая модель задачи может выполняться как на естественном языке (т.е. имеет словесную форму), так и на математическом (т.е. используются символы).

Знаковая модель задачи, выполненная на естественном языке, -это общеизвестная краткая запись.

Знаковая модель задачи, выполненная на математическом языке, имеет вид выражения: " 3+2".

Психологи и многие математики рассматривают процесс решения задачи как процесс поиска подходящей модели и её преобразования. Каждая модель выступает как одна из форм отображения сущности (структуры) задачи, а преобразование её идет по пути постепенного обобщения, абстрагирования и, в конечном результате, построения её математической модели. Таким образом, чтобы решить задачу, надо построить её математическую модель, но помочь в этом могут другие модели, называемые вспомогательными.

Чтобы самостоятельно решать задачи, ученик должен освоить различные виды моделей, научиться выбирать модель, соответствующую предложенной задаче, и переходить от одной модели к другой.

Необходимо отметить, что в данной работе я не касаюсь краткой записи условия задачи. Этот этап очень важен, однако, я исходила из того, что он традиционно присутствует в работе учителя. Поэтому главное внимание я уделяю тем приемам работы над задачей, которые в меньшей степени используются в традиционной системе, которые помогают мне пробудить у детей интерес к задаче, к поиску решений этой задачи [31].

При решении простых и составных задач на сложение и вычитание используется схематический чертеж.

Схематический чертеж прост для восприятия, так как:

· наглядно отражает каждый элемент отношения, что позволяет ему оставаться и при любых преобразованиях данного отношения;

·   обеспечивает целостность восприятия задачи;

·   позволяет увидеть сущность объекта в " чистом" виде без отвлечения на частные конкретные характеристики (числовые значения величин, яркие изображения и др.), что трудно сделать, используя другие графические модели;

·   обладая свойствами предметной наглядности, конкретизирует абстрактные отношения, что нельзя увидеть, например, выполнив краткую запись задачи;

·   обеспечивает поиск плана решения, что позволяет постоянно соотносить физическое (или графическое) и математическое действия.

Как было сказано выше, текстовые задачи на сложение-вычитание в 1-м классе строятся как частные случаи отношения величин, поэтому моделирование простой задачи у детей не вызывало затруднения, т.к. величины в задаче находятся в отношении целого и частей.

 

Рис.3 Схематический чертеж

 

Если величины связаны отношением " больше (меньше) на" (Рис. 4.); Сравнение двух величин (Рис. 5.).

 


Освоение представлений графической, знаково-символической модели в 1-м классе.

Со схемами в системе Д.Б.Эльконина - В.В.Давыдова дети знакомятся с первых уроков, когда находят среди разных предметов одинаковые по какому-либо признаку: длине, площади, форме, объему [40].

Учащимся выдается набор полосок разных по длине, ширине и цвету. Их задача найти равные по какому-либо признаку. Сразу дети находят одинаковые по цвету, затем, путем наложения, одинаковые по длине. Перед учащимися ставится следующая задача:

Что нужно сделать, чтобы каждый раз не измерять полоски, а найти одинаковые сразу и быстро? Дети предлагают свои варианты: различные значки, но значки должны быть одинаковые, и на одинаковых полосках ставят значки.

А как записать в тетради, что среди полосок есть одинаковые?

Ребята обсуждают задание и приходят к выводу, что нужно зарисовать и поставить значки.

Далее дети выполняют более сложное задание: сравнивают сосуды по объему и находят равные. Равные сосуды необходимо запомнить, а лучше как-то отметить. Опять предлагаются значки.

Затем записывают в тетради с помощью рисунка и значка, что на столе есть одинаковые по объему сосуды.

После этого дети находят сосуды, одинаковые по другим признакам: материалу и высоте. Записывают в тетради, что сосуды равны по высоте с помощью вертикальных отрезков.

На последующих уроках дети с помощью схем учатся находить и определять равные и неравные величины показывать с помощью схем равенство и неравенство величин (Рис. 6).

 


Рис.6

 

Через несколько уроков вводится буквенная символика. Все величины обозначаются буквами русского алфавита.

На уроке с помощью весов ученики устанавливают, что масса банки с водой и мешочка с песком одинакова. Затем дети записывают равенство масс с помощью отрезков равной величины. Обсуждая схему, дети приходят к выводу: величины необходимо обозначить, чтобы было понятно и другим людям. Учитель предлагает обозначить с помощью букв. Буквы подписываются и на предметах и на схеме (Рис.7).

 

Рис.7

 

Делается вывод, что о равенстве величин можно сказать формулой: А = Б. (Масса " А" равна массе " Б" ).

Итак, выполняя предметные действия (на основе измерения разных величин), отображая эти действия графически, сначала в виде рисунка, затем модели, учащиеся подходят к знаково-символической форме: равенству, уравнению.

В задании 60 дети знакомятся с понятиями " целое" и " части". Свои практические действия они переносят на бумагу с помощью схем.

В этой теме появляются текстовые задачи и уравнения, которые решаются с помощью, с опорой на схему. Работа со схемой в текстовых задачах является продолжением, а не новым материалом, как в традиционной системе, поэтому проходит легче, вызывая у детей интерес. Очень важно этот интерес у детей поддержать различными видами работ со схемой, которые помогли бы ребятам выбрать правильное решение задачи. Поэтому, на мой взгляд, необходимо, чтобы схему дети составляли сами, без помощи учителя. Составление схемы

К кормушке прилетело И синиц и К воробьев. Сколько всего птиц в кормушке?

На доске вычерчиваются все схемы, которые предлагают ребята. Каждая схема анализируется. После анализа остаются правильные, из которых выделяется более удобная для выбора решения (Рис.8).

 

Рис.8

 

Из группы схем дети выбирают нужную (Рис.9).

 

Рис.9

 

Выбрав схему 4, учащиеся объясняют решение задачи: все птицы - это целое, которое состоит из двух частей: воробьев и синиц, поэтому, чтобы найти, сколько всего птиц, нужно сложить К+И.

Анализируя после решения задачи схему 2, можно перейти к составлению уравнений:


х - И = К        х = К + И

х - К = И        х = И + К.

. Активно проходит работа по составлению задач по схеме (Рис.10).

 

Рис.10С + К = А, А - С = К

А - К = С.  

 

С помощью схемы можно дать понятие обратной задачи. Дети решили задачу: " В кормушке было А воробьев, прилетели синицы и стало М птиц. Сколько птиц прилетело? " (см. Рис. 11).

 

Рис.11 A + x = M

x = M - A.  

 

Затем схема меняется (Рис. 12).

 

Рис.12 x + B = M= M - B

x = A + B  

 

По схеме дети должны изменить условие задачи и уравнение к ней.

Во 2 - 4 классах работа над схемой продолжается. При решении составных задач схема помогает не только найти различные способы решения, но и выбрать самый рациональный, самый короткий. Например: " На трех полках стояло 116 книг. Когда с первой полки сняли 8 книг, со второй - 12 книг, а с третьей - 6 книг, на всех полках осталось поровну. Сколько книг стояло на первой полке первоначально? " [40]

Строится схема (Рис. 13).

 

Рис.13

 

Дети анализируют задачу, а затем предлагают свой способ решения. Обычно средние и слабые ученики предлагают:

+ 6 = 14 или   116 - 8 = 108

+ 12 = 26 108 - 12 = 96

- 26 = 90 96 - 6 = 90

: 3 = 30           90: 3 = 30

+ 8 = 38          30 + 8 = 38

Сильные ученики предлагают свой вариант решения:

+ 8 + 6 = 26

- 26 = 90

: 3 = 30

+ 8 = 38

Все способы анализируются и выясняется, что все решили правильно. Выбирается самый рациональный. Те ребята, которые решили задачу рациональным способом, объясняют, что им помогло выбрать этот способ. (По схеме видно, что все книги состоят из 2-х частей, тех, что сняли и тех, которые остались на полках. Все книги, которые сняли - это целое. Целое состоит из 3-х частей, снимали с трех полок, а целое мы узнаем действием сложения, складываем все части).

При решении задач на умножение и деление первоначально использовали чертеж.

" В одной коробке 6 карандашей. Сколько карандашей в 3 таких коробках? "

 

Рис.14

 

Использовался чертеж и при решении задач на пропорциональное деление. Например: " Одно число больше другого в 6 раз, а их сумма составляет 350. Найти числа."

 

Рис.15

 

При решении задач на движение в схему были сразу введены условные обозначения: S - сплошная дуга, V - стрелка, t - пунктирная дуга.

" Навстречу друг другу одновременно из двух деревень вышли две пешехода. Скорость одного из них 5 км/ч., а другого 4 км/ч. Через 2 час они встретились. Какое расстояние между деревнями? ".

 

Рис.16

 

Четкие условные обозначение позволяют детям строить сложные схемы, видеть в них нужные формулы, отношения для решения задачи. Иногда мелочь в условных обозначениях, в схеме, позволяет не запутаться в числовых значениях составной задачи.

Так при решении задач на приведение к единице обозначение количества пунктирной дугой (на начальном этапе решения таких задач) позволило более четко представлять условие задачи и не путаться в числовых данных.

 

Рис.17 X + A = B X = B - A.  

 

Ученики по чертежу устанавливают, что х - это часть. Чтобы найти часть, нужно из целого вычесть известную часть А.

И в 3 - 4 классе, когда изучаются свойства уравнения, схема снова приходит на помощь в проверке уравнений при доказательстве свойств.

 

Решается уравнение:  5 + x - a = c x = c + a - 5.

 

Затем с помощью схемы проверяется: (Рис. 18).

 

Рис.18 x = c + a - 5  

 

Схемы помогают и при решении задач способом составления уравнения. С помощью схемы составляются уравнения к задачам.

При составлении уравнений к задачам, как и при решении задач на " приведение к единице", помогает краткая запись в виде таблицы. По таблице ребята находят равные величины или величины, которые можно уравнять.

Например: " За несколько пар коньков ценой 5000 руб. Заплатили 20.000рублей, а за столько же пар ботинок 96.000руб. Сколько стоила пара ботинок? "

 

  Цена Количество Стоимость
II 5000 I = II 20.000
I ? (х) I = II 96.000

 

Одинаковая величина - количество. Эту величину уравнивают, составляя уравнение: = 20.000: 5.000                 II = 96.000: х

: 5000 = 96.000: х

Способ краткой записи: таблицы или схему дети выбирают сами, если предлагают обе, то обе выносятся на доску, обсуждается, что больше помогает найти решение задачи или составить уравнение. Такая работа проводится на начальном этапе, а затем при решении задач ребенок сам для себя выбирает удобный способ записи условия задачи.

Вывод: Структуру задачи можно представить с помощью различных моделей. Все модели принято делить на: предметные (вещественные); графические; символические.

Психологи и многие математики рассматривают процесс решения задачи как процесс поиска подходящей модели и её преобразования. Каждая модель выступает как одна из форм отображения сущности (структуры) задачи, а преобразование её идет по пути постепенного обобщения, абстрагирования и, в конечном результате, построения её математической модели.

 


Выводы по первой главе

 

Проанализировав литературу по теме исследования, мы можем сделать следующие выводы:

) по мнению С.Л. Рубинштейна, в качестве основного предмета психологического исследования мышление выступает как процесс, как деятельность. Результаты мыслительной деятельности - понятия, знания - сами включаются в процесс мышления, обогащают его и обуславливают его дальнейший ход, возникая в результате мышления, понятия сами включаются в него. Мышление совершается в понятиях. Процесс мышления есть одновременно и движения знания в нем, именно это составляет содержательную сторону мышления.

2) вслед за Л.С. Рубинштейном мы будем различать наглядно действенное мышление и наглядно-образное мышление. Наглядно-образное мышление характеризуется опорой на представления. Наглядно-образное мышление характерно для дошкольника и младшего школьника. Наглядно-действенное мышление - вид мышления, опирающийся на непосредственное восприятие предметов, реальное преобразование в процессе действий с предметами. Наглядно-образное мышление - вид мышления, характеризующийся опорой на представления и образы; функции образного мышления связаны с представлением ситуаций и изменений в них, которые человек хочет получить в результате своей деятельности, преобразующей ситуацию. Очень важная особенность образного мышления - становление непривычных, невероятных сочетаний предметов и их свойств. В отличие от наглядно-действенного мышления при наглядно-образном мышлении ситуация преобразуется лишь в плане образа.

3) логическое мышление определяет общую стратегию процесса познавательной деятельности в соответствии с основной структурой объектов; широкий смысловой контекст, внутри которого осуществляется наглядно - действенное и наглядно - образное мышление. Его корни лежат в практике повседневного общения ребенка с взрослыми, в конкретных видах активной деятельности самого ребенка, его играх, бытовой деятельности. Поэтому развитие логического мышления - это одна из важных задач начального обучения. Умение мыслить логически, выполнять умозаключения без наглядной опоры, сопоставлять суждения по определенным правилам - это необходимое условие для успешного освоения учебного материала.

) научить детей решать задачи - значит научить их устанавливать связи между данными и искомым и в соответствии с этим выбрать, а затем и выполнить арифметические действия. Для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.

) структуру задачи можно представить с помощью различных моделей. Все модели принято делить на: предметные (вещественные); графические; символические. Психологи и многие математики рассматривают процесс решения задачи как процесс поиска подходящей модели и её преобразования. Каждая модель выступает как одна из форм отображения сущности (структуры) задачи, а преобразование её идет по пути постепенного обобщения, абстрагирования и, в конечном результате, построения её математической модели.

 


Поделиться:



Последнее изменение этой страницы: 2020-02-17; Просмотров: 87; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.136 с.)
Главная | Случайная страница | Обратная связь