Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Источники энергии древнего мира



Аннотация

 

Целью этой работы является изучение всех источников энергии, которыми пользовался человек на протяжении своего исторического развития - от Каменного века до двадцатого.

С развитием человеческой цивилизации совершенствовались и источники энергии, применяемые человеком. В Каменном веке таковыми являлись огонь и лук, а в ХХ веке появились атомный реактор, установки управляемого термоядерного синтеза, магнитогидродинамический генератор.

Создание новых источников энергии (и совершенствование старых) шло сложными путями. В Древнем мире это происходило либо за счёт стараний немногих гениальных людей, либо в результате наблюдений многих поколений. В Средние века деятельность многих людей была направлена по ложному пути. Этим путём был поиск " perpetuum mobile" - вечного движения, что свидетельствует о сильном упадке науки. В тот период человеческой истории, называемый Новым временем, источники энергии создавались людьми, более осведомлёнными в науке и технике, чем те, кто строил " вечный" двигатель и искал " философский камень". В ХХ веке работу над новыми источниками энергии вели целые научно-исследовательские институты и производственные объединения.

Автор считает, что его работа сможет убедить читателей в том, что не только уровень развития человеческой цивилизации влияет на применяемые ею источники энергии, но и сами источники энергии могут изменить ход человеческой истории. В работе эти источники энергии будут мною особо отмечены.

Автор думает, что его работа сумеет заинтересовать большое количество людей и может быть использована в качестве информационного пособия по выбранной автором теме.


Содержание

 

Аннотация

Введение

1. Источники энергии древнего мира

1.1 Огонь и способы его добывания

1.2 Применение энергии волокон, дерева, сухожилий (лук, метательные машины античности)

1.3 Водяное колесо

1.4 Паровая турбина Герона - любопытная игрушка Древнего мира

1.5 Энергия химических соединений (энергия пороха)

2. От раннего средневековья до ХХ века

2.1 " Perpetuum mobile" - неосуществимая мачта средневековья

2.2 От водяного колеса до гидротурбины

2.3 Тепловые двигатели

2.3.1 Теория тепловых двигателей

2.4 Паровые двигатели

2.4.1 Модель Папена

2.4.2 Паровой насос Сэвери

2.4.3 Паровая машина Ньюкомена

2.4.4 Паровая машина Ползунова

2.4.5 Паровая машина Уатта

2.4.6 Паровая турбина

2.5 Двигатели внутреннего сгорания

2.5.1 Цикл Карно

2.5.2 " Идеальный двигатель" Рудольфа Дизеля

2.5.3 Газовая турбина

2.5.4 Реактивные двигатели

3. Электричество

3.1 Электрогенератор

3.2 Электродвигатель

3.3 Химические источники тока

3.4 Аккумулятор

4. ХХ век

4.1 Атомная энергия

4.2 Атомный реактор

4.3 Атомная оружие

4.4 Энергия термоядерного синтеза

4.4.1 Установки управляемого термоядерного синтеза (УТС)

4.4.2 Мюонный катализ

4.4.3 Термоядерное оружие

4.5 МГД - генератор

Заключение

Список использованной литературы

 


Введение

 

Целью моей работы по выбранной теме является изучение всех источников энергии, применявшихся в тот или иной период человеческой истории.

Основной задачей при проведении работы являлась переработка большого объёма информации, полученных мною из разных источников: научно-популярных статей, книг, энциклопедий (список использованных источников информации приведён в конце работы), и объединение этой информации в единое целое. Я считаю, что эта задача была решена, и итогом решения этой задачи является эта работа.

Я считаю, что моя работа очень актуальна в настоящий момент времени, когда подходят к концу топливные ресурсы нашей планеты. С помощью моей работы можно проанализировать, какие энергоресурсы использовало человечество на каком-либо этапе своего развития, и из этого сделать вывод, какие источники энергии наиболее перспективны. Перспективностью в настоящий момент я считаю не дешевизну самого источника энергии (двигателя, генератора), а доступность и большие запасы топлива для этого источника энергии. Таковыми в настоящий момент являются установки управляемого термоядерного синтеза (УТС), водяные турбины, многие так называемые альтернативные источники энергии. К ним можно отнести и атомные реакторы на быстрых нейтронах. Хотя топливо для них получается дорогим способом, однако эти реакторы могут сами производить топливо для своей работы.

Своё исследование я построил следующим образом: я распределил все источники энергии в хронологическом порядке, сгруппировав их в три больших временных периода: Древний мир, от Средневековья до ХХ века, ХХ век. Такое разделение отражено в оглавлении моей работы. После этого я составил описание к каждому источнику энергии, добавив также значение этого источника в истории человечества, а для некоторых (альтернативные источники энергии, гидротурбины, установки УТС и др.) - и перспективы их развития.

На этом я заканчиваю это своеобразное предисловие и приступаю к представлению самой работы.

Человечество с самого своего появления пользуется источниками энергии. Сначала они были весьма примитивными. Таковыми были, например, огонь или лук. Но с ходом развития человеческой цивилизации усложнялись и источники энергии, используемые им, а также открывались или изобретались новые источники. И вот, в ХХ веке, человек научился использовать энергию атомного ядра и термоядерного синтеза, построил МГД [1]- генератор.

Открытие новых источников энергии шло сложными путями. На начальном этапе развития человечеств открытие чего - либо нового происходило либо по счастливой случайности, либо благодаря гениальному учёному (как, например, Герон или Архимед), либо это открытие совершалось на протяжении значительного периода времени (поиск способов добывания огня).

В Средние века, во время упадка науки, открытия совершались лишь благодаря немногим действительно образованным людям (а не алхимикам и другим лжеучёным), но из-за огромной власти христианской церкви им, в лучшем случае, приходилось отказываться от своих убеждений, в худшем - они попадали на костёр инквизиции. Такие " научные изыскания", как поиск " perpetuum mobile", свидетельствуют о сильном упадке многих наук, о незнании основных законов природы.

В тот период мировой истории, называемый Ренессансом, а также в более позднее время (период Новой истории), многие люди вплотную начали заниматься наукой и техникой, в том числе - постройкой различных машин. С этого времени и начался поиск универсального двигателя, способного заменить уже используемые (водяное колесо). Этот поиск шёл с переменным успехом и вёлся совершенно разными людьми. Эти изобретатели (как и их изобретения) были различны; многие из них стали изобретателями благодаря великим учёным или из-за того, что их просто заинтересовала важная и интересная проблема - постройка двигателей. Например, изобретатель парового котла и конструктор первых моделей двигателя внутреннего сгорания и паровой машины Дени Папен был в своё время врачом, но увлёкся этой областью техники лишь благодаря встречам с Христианом Гюйгенсом. Изобретатель четырёхтактного ДВС[2] Август Отто когда-то был конторщиком, приказчиком, бухгалтером. Такая скучная и бесперспективная жизнь заставила его искать новый путь к успеху - и он занялся постройкой нового двигателя.

С течением времени двигатели (и другие источники энергии) перестали быть уродливыми, примитивными и, как часто бывало, неработоспособными конструкциями механиков-самоучек. В этой области техники всё сильнее и сильнее начала проявлять себя наука, и новые двигатели конструировались на основе уже изученных принципов и сложных математических расчётов (дизель-мотор, паровая турбина).

В ХХ веке эта область техники (постройка двигателей и других источников энергии) перестала существовать отдельно от науки. Стали иметь место такие случаи, когда между открытием новых свойств какого-либо материала и постройкой источника энергии, использующего эти свойства, проходило очень мало времени (например: открытие радиоактивности и постройка ядерного реактора).

Конструированием новых источников энергии теперь занимались не отдельные выдающиеся личности, а целые группы учёных, исследовательские институты, конструкторские бюро и производственные объединения.

Именно ими были созданы такие сложные и оригинальные конструкции, как ТОКАМАК, МГД - генератор, установки лазерного термоядерного синтеза, многие так называемые альтернативные источники энергии.

Мы живём на пороге того времени, когда многие энергетические ресурсы (нефть, природный газ, каменный уголь) будут на грани исчерпания. Казалось бы, нас ждёт " энергетический голод". Но благодаря упорным трудам учёных скоро мы будем обеспечены дешёвой энергией на тысячи лет вперёд. Я говорю о постройке первых промышленных установок, осуществляющих управляемый термоядерный синтез, а вслед за ними - и постройке ТЯЭС - термоядерных электростанций. Топливо для этих установок находится практически повсюду, а на планете запасы этого топлива огромны. Пуск этих установок уже близок.

В ожидании вышеупомянутого пуска автор реферата предлагает Вам обзор и описание (конструкция, принцип действия) всех (или почти всех) источников энергии, которые когда-либо были открыты, построены и применены человеком. Обзор идёт в хронологическом порядке, а источники энергии сгруппированы по принципу их принадлежности к той или иной области физики (термодинамика, электричество, ядерная физика). Отдельную главу занимают " вечные двигатели", которые, хотя и не относятся к выбранной автором теме, упомянуты здесь ради ознакомления. В реферате есть главы, в которых помещены описания машин, которые, по сути, не производят энергию из чего-либо, а только преобразуют её. Такими машинами являются электрогенератор и электродвигатель. Они помещены в данный реферат потому, что без них невозможно представить современную промышленность и быт человека. Эти конструкции сыграли в истории человека не менее важную роль, чем, в своё время, изобретение Уаттом паровой машины, совершившей промышленный переворот, и создание совершенного ДВС.

Итак, обзор начинается с огня, которым пользовались наши далёкие предки, и заканчивается описанием установок управляемого термоядерного синтеза, которыми будут пользоваться наши потомки.


Водяное колесо

 

В истории человечества водяные двигатели всегда играли особую роль. На протяжении многих веков водяные машины были главным источником энергии на производстве. Затем развитие тепловых (а позже - электрических) двигателей сильно сузило сферу их применения. Однако везде, где имелись дешёвые гидроресурсы (ручей с быстрым течением, водопад или порожистая река), водяной двигатель мог оказаться предпочтительнее всех других, поскольку был очень прост по своей конструкции, не требовал топлива и имел сравнительно высокий КПД. После того как в первой половине XIX века была изобретена водяная турбина с очень высоким КПД, гидроэнергетика пережила как бы второе рождение. С началом электрификации по всему миру развернулось строительство ГЭС, на которых электрогенераторы получали свой привод от гидротурбин различных конструкций. Об электрогенераторах и гидротурбинах рассказ будет чуть позже, а сейчас будет рассказ о водяном колесе.

Первые водяные колёса появились ещё в древности. По конструкции они делились на два основных вида (см. ниже): нижнебойные (подливные) и верхнебойные (наливные). Нижнебойные водяные колёса были наиболее простым типом водяного двигателя. Они не требовали для себя строительства сложных гидротехнических сооружений, но в то же время имели самый низкий КПД, так как их работа основывалась на достаточно невыгодном принципе: подтекающая под колесо вода ударяла в лопатки, заставляя их вращаться. Работа верхнебойных колёс основывалась на использовании веса падающей воды.

КПД верхнебойного водяного колеса достигал 75%, который был самым высоким из всех созданных тогда двигателей. Этот своеобразный рекорд был побит с появлением гидротурбин различных конструкций.

КПД среднебойного колеса равнялся 65%, нижнебойного - ещё меньше.

Несмотря на относительно высокий КПД, водяные колёса были маломощными двигателями. Обычно их мощность равнялась 5 - 6 лс. Для получения больших мощностей строились колёса огромных размеров, что было связано с новыми трудностями: такая " махина" была тяжела, громоздка, её было трудно запустить.

Нижнебойное и верхнебойное водяные колёса отличались по свойствам: при равной мощности первое имело большую скорость вращения, чем второе.

С появлением такой тепловой машины, как машина Уатта, водяные двигатели стали забываться. Второе возрождение водяного двигателя, но уже в другом виде, началось с изобретением в 1750 году венгром Сегнером, работавшем в Геттингенском университете совершенно нового типа водяного двигателя.

На рисунке слева представлено верхнебойное водяное колесо, справа - нижнебойное.


 

Тепловые двигатели

 

Теория тепловых двигателей

История тепловых двигателей имеет более глубокие корни, чем многие думают. Кроме вышеупомянутой турбины Герона есть свидетельства, что к созданию тепловых машин приложили руку такие великие учёные, как Архимед, придумавший весьма оригинальную паровую пушку, именуемую как " Архитронито" (" Самый сильный гром" ), и Леонардо да Винчи, от которого осталось два эскиза примитивного парового двигателя. Есть упоминания о неком Джиованни Бранка, в 1629 году опубликовавшем своё изобретение: " толчею для изготовления порошка необычайным двигателем". Этим двигателем была паровая турбина!

Тепловыми двигателями называют машины, в которых происходит превращение теплоты, полученной при сгорании топлива, в механическую работу. Вещество, производящее работу в тепловых машинах, называют рабочим телом или рабочим веществом. В паровых машинах рабочим телом является водяной пар, в двигателях внутреннего сгорания - газ. Тепловые машины могут быть устроены различно, но все они обладают общим свойством - периодичностью действия, или цикличностью, в результате чего рабочее тело возвращается в исходное состояние.

 

 


Циклы основных современных тепловых двигателей показаны на рисунке. Полезная работа, совершённая этими двигателями, численно равна площади фигур, ограниченных графиками тепловых процессов, происходящих с рабочим телом.

КПД любого (в том числе и теплового) двигателя не может быть равен 100%. Для тепловых двигателей эта невозможность определяется из II закона термодинамики: не существует такого термодинамического процесса, единственным результатом которого было бы превращение некоторого количества теплоты в работу. Работа А в тепловых машинах равна разности теплоты, полученной от нагревателя, и теплоты, отданной охладителю, которым чаще всего является либо атмосфера, либо специальное устройство.

 

 

Паровые двигатели

 

Модель Папена

Французский врач Дени Папен, встретившись с крупнейшим учёным того времени - Христианом Гюйгенсом, после долгих и увлекательных бесед с ним был так сильно заинтересован задачами, стоящими перед инженерами, что решил изменить медицине и посвятить себя технике. Он выбрал для себя самую важную и интересную по тому времени область техники - исследование свойств пара и создание теплового двигателя.

В 1680 году Папен изобрёл паровой котёл. Но, создав котёл, он не сразу нашёл способ его применения, а даже отошёл от использования пара - его поглотила идея создания машины, в которой работали бы атмосферное давление и газ, выделявшийся при сгорании пороха. Эта конструкция и принцип действия показаны на верхнем рисунке. Но этому первому двигателю внутреннего сгорания не суждено было жить - от неё отказался сам изобретатель, убедившись, что полезная работа, совершаемая ею, невелика.

И тогда Папен вернулся к пару. Свою первую паровую машину он построил, используя тот же принцип, только заменил порох на воду. И, казалось бы, изобретатель добился своего - его паровая машина работала. Но представив, сколько возни было бы с ней, а в результате - один рабочий ход в минуту и мощность меньше 1 лс, Папен отказался и от неё.

Не суждено было найти применение машинам Папена, но другое его изобретение - паровой котёл - являлось отправной точкой для других конструкций, более или менее удачных. Папен также был первопроходцем в области конструирования ДВС, что также является его заслугой.

 


Паровой насос Сэвери

Изобретён английским горным инженером Томасом Сэвери.

Предназначался для откачки воды из шахт. Этот насос имел малую мощность и КПД.

Из-за острой нужды в универсальном двигателе были попытки соединить этот насос и водяное колесо для получения вращательного движения: насос качает воду из нижнего в верхний бак, из которого вода льётся на водяное колесо и возвращается в нижний бак.

Работа насоса происходила так: пар в насосном резервуаре охлаждался впущенной через кран водой, создавая в нём (в резервуаре) давление ниже атмосферного, из-за чего происходило всасывание воды из шахты; после этого в резервуар подавался пар, который и вытеснял всосанную воду; затем описанный цикл повторялся. Клапаны обеспечивали работу насоса: они не допускали попадания пара в шахту, попаданию воды в резервуар тогда, когда этого не было нужно, не допускали обратный сток воды в шахту.

Об этом насосе знал русский царь Пётр I, который хотел применить его при строительстве каналов в Петербурге, но был разочарован его малой мощностью и приказал поставить насос в Летнем саду для обеспечения водой фонтанов.

 


Паровая машина Ньюкомена

Была создана в 1711 году английским изобретателем - кузнечным мастером Томасом Ньюкоменом.

Принципиальное устройство изображено на рисунке.

Машина управлялась вручную, лишь в 1718 году Бейтон придумал механизм, обеспечивающий машине самостоятельность.

Машина имела КПД, равный 1%, и поэтому нашла применение только на угольных шахтах, где было дешёвое топливо.

Применялась для привода водяного насоса, откачивающего воду из шахт.

Принцип действия машины был несложен: давление пара, впускаемого в цилиндр, поднимало поршень вверх. Когда он достигал определённой точки, в цилиндр подавалась холодная вода, из-за чего пар конденсировался, и давление резко падало - поршень начинал двигаться вниз под действием атмосферного давления.

Исходя из описанного принципа действия, машину Ньюкомена правильнее называть пароатмосферной, так как атмосферное давление играет не меньшую, чем пар, роль.

 


Паровая машина Ползунова

Паровая машина русского механика И.И. Ползунова была построена за 20 лет до создания Уаттом своей машины, в 1766 году на Алтае. Ползунов был высоко образованным человеком для своего сословия, имел представление об машинах Сэвери и Ньюкомена. Перед конструированием машины механик проделал большую работу - не только расчёты, но и преодоление чиновничьей волокиты. И только посулив большую выгоду от использования своей " огнедействующей" машины, Ползунов смог её построить. Но…тяжёлая болезнь - туберкулёз - погубила не только изобретателя, но и его изобретение. После смерти Ползунова машина проработала 43 суток, не только окупила сама себя, но и принесла большую экономию заводу. Машина встала из-за поломки парового котла, сделанного из меди (для пробы), а не из чугуна. Вскоре она была разобрана " за ненадобностью". Схематическая конструкция машины показана на рисунке. У ней было два цилиндра, поршни которого были соединены таким образом, что, когда один из них опускался, то другой в это время поднимался. С помощью механизмов машина работала самостоятельно, требовалось лишь подбрасывать топливо в топку котла. В машине использовалось не только атмосферное давление, но и давление пара. Конструкция Ползунова являлась машиной непрерывного действия. Механик также знал, как можно преобразовать возвратно-поступательное движение её во вращательное, если это потребуется, хотя 90% механизмов завода, на котором стояла машина, требовали именно возвратно-поступательного привода (воздуходувные меха, насосы и пр.). В целом, машина Ползунова являлась первым в мире универсальным тепловым двигателем. Несмотря на печальную судьбу как машины, так и её изобретателя, мы не должны забывать, кто первым изобрёл этот так необходимый для промышленности того времени двигатель - выдающийся уральский механик, солдатский сын Иван Иванович Ползунов.


 

Паровая машина Уатта

Более удачливым в конструировании, а также признании универсального двигателя был английский механик Джеймс Уатт.

Уатт был механиком, работавшим в мастерских университета города Глазго. Однажды он получил задание - починить имевшуюся при университете машину Ньюкомена. Уатт выполнил задание, а сам сделал себе модель машины и начал с ней экспериментировать. После нескольких опытов механик выявил её основные недостатки, и решил построить свой тепловой двигатель, который был от них свободен.

Имея не только материальную, но и научную поддержку, Уатт принялся за работу.

Прежде всего, Уатт отказался от конденсации пара в самом цилиндре - на это тратилась дополнительная энергия. Для конденсации он сконструировал отдельный прибор, в котором во время работы машины создавалось разряжение, приводившийся в действие самой машиной.

После нескольких более или менее удачных проектов Уатт сконструировал действительно универсальный тепловой двигатель, устройство которого показано на рисунке (для наглядности опора балансира развёрнута на 180 градусов). Машина имела цилиндр двойного действия: в то время, как в верхней его части происходило расширение пара, пар из нижней части выпускался в конденсатор, и наоборот. Для впуска - выпуска пара то из нижней, то из верхней части цилиндра Уатт применил золотник, являвшийся своеобразным краном и игравший не менее важную роль, чем поршень или цилиндр (" Мал " золотник", да дорог! " ). Точная подгонка всех деталей имела очень важное значение, так как без этого машина не стала бы работать, но для промышленно развитой Англии достижение точности не являлось трудным вопросом. Уатт применил в своей машине ещё одно полезное приспособление - регулятор подачи пара, который заставлял работать машину с постоянным числом оборотов вала. Именно Уатт ввёл понятие " лошадиная сила". Двигатель Уатта оказался не только универсальным, но и мощным и компактным, что позволяло его ставить не только на заводы, но и на средства передвижения.

Паровая машина Уатта сыграла значительную роль в истории человечества, т.к. она сумела произвести промышленный переворот, т.е. переход от ручного производства к машинному.

 

 

Паровая турбина

История промышленной паровой турбины началась с изобретения шведским инженером Карлом - Густавом - Патриком де Лавалем …сепаратора для молока. Сконструированный аппарат требовал для себя привода с большим числом оборотов. Изобретатель знал, что ни паровая машина, ни ДВС того времени не могли развить нужное число оборотов. Но он также знал о турбине Герона, и применил его изобретение для своего сепаратора: через две изогнутые трубки выходил пар, и они начинали двигаться, вращая всю конструкцию.

Вскоре Лаваль отошёл от реактивного принципа, и построил турбину по активному. Рабочее колесо этой турбины имело по окружности множество лопаток. К лопаткам примыкало 4 сопла, из которых со скоростью свыше 1 км/с выходил пар, передавая свою кинетическую энергию турбине, заставляя её вращаться с огромной скоростью. Эта турбина имела мощность 5 лс и развивала 30000 оборотов в минуту, что делало её непригодной для привода рабочих машин (станков и пр). Но после упорной работы Лаваль стал строить турбины мощностью 500 лс при 10000 оборотов в минуту; чтобы ещё снизить число оборотов, Лаваль применял редуктор.

Но и после появления этих турбин новый двигатель не мог конкурировать с паровой машиной: одноступенчатая турбина Лаваля с редуктором была дорога, громоздка и имела не очень высокий КПД.

 

 

Значительно больших успехов в конструировании паровых турбин добились изобретатели других стран.

Основной ошибкой Лаваля было применение только одной ступени, что и вызывало указанные недостатки. Французский инженер Огюст Рато предложил активную турбину с несколькими ступенями, рассчитанную на 1000 лс. Главным новшеством было то, что Рато заставил пар расширятся постепенно, для чего в перегородках между колёсами турбины были проделаны сопла, причём в первой перегородке сопла менее широкие, чем во второй, а те, в свою очередь, менее широкие, чем в третей и так далее, что позволяло использовать всю кинетическую энергию пара, так как он расширялся и терял давление постепенно, увеличивая свою скорость.

Активную турбину несколько другой конструкции построил американский инженер Чарльз Кертис. Он предложил на одном рабочем колесе помещать несколько рядов лопаток, между которыми конструктор расположил неподвижные, связанные со стенками корпуса турбины направляющие каналы. Таким образом, струя пара встречается с первым рядом лопаток, но не успев передать всю энергию колесу и значительно снизить свою скорость, струя попадает в неподвижные каналы, которые направляют пар на второй ряд рабочих лопаток. Отдав часть энергии первому ряду, другую часть струя пара отдаёт второму и так далее. В результате пар передаёт турбине Кертиса ту же энергию, что и турбине с одним рядом лопаток, но при меньшей скорости вращения. Эта турбина имеет один недостаток - низкий КПД.

Не был забыт и реактивный принцип. Англичанин Чарльз Парсон вошёл в историю техники как создатель промышленной турбины реактивного типа. Свою первую турбину, используя реактивный принцип, Парсон построил в 1884 - 1885 годах. В этой конструкции использовался и активный принцип. Это была многоступенчатая турбина. Пар в этой турбине, проходя между неподвижными лопатками направляющего аппарата, образующими коническое сопло, стремится расшириться, увеличивая свою скорость. Но, кроме расширения в направляющих аппаратах, Парсон ввёл расширение и в каналах лопаток рабочего колеса, следовательно, проходя по рабочим лопаткам, пар продолжает расширяться. Таким образом, вдоль лопаток пар движется в конце с большей скоростью, чем в начале. Когда пар покидает рабочие лопатки с повышенной скоростью, он как бы дополнительно отталкивается от их вогнутых поверхностей, создавая реактивное действие на рабочие лопатки, сообщающее им дополнительную скорость, а, следовательно, и дополнительную энергию.

Цикл Карно

Знал ли парижский книгоиздатель Башелье, что отпечатав и выставив в витрине своего магазина в 1824 году тоненькую брошюрку, что ей суждено положить начало новой науке и взбудоражить умы многих учёных и инженеров того времени. Название книги удивляло и озадачивало: " Размышления о движущей силе огня и о машинах, способных развивать эту силу". Автором её был молодой инженер Сади Карно.

В своей книги Карно излагал принципы, по которым мог бы работать идеальная тепловая машина, указывая также на недостатки существующих тепловых двигателей. Графики, описывающие работу этой идеальной машины, показаны на рисунке. Графиком 1-2 является изотермическое расширение, графиком 2-3 - адиабатическое расширение, графиком 3-4 - изотермическое сжатие, графиком 4-1 - адиабатическое сжатие. Механическая работа, совершаемая рабочим телом, численно равна площади фигуры, ограниченной кривыми 1-2-3 и осью абсцисс, а площадь фигуры, заключённой между кривыми 1-4-3 и осью абсцисс численно равна работе, затраченной на сжатие газа. Была выведена формула КПД для этого цикла: КПД равен разности единицы и отношения температур охладителя и нагревателя. Он не зависит от вида рабочего тела (газ или пар), а является только функцией от температуры. КПД будет тем выше, чем выше температура нагревателя и чем ниже - охладителя. КПД цикла Карно самый высокий из КПД всех тепловых двигателей. Цикл Карно не противоречил основным законам термодинамики, однако, практически он был неосуществим, так как изотермический процесс является идеальным, практически невозможным.

Итак, положив начало новой науке - термодинамике, Карно продолжил свои работы в этой области. Но дальнейшая судьба его была трагична: в 1832 году, полный энергии и творческих сил, Сади Карно скончался из-за тяжёлой болезни - холеры. Все бумаги и труды больного были сожжены, кроме некоторых отрывочных записей.

 


2.5.2 " Идеальный двигатель" Рудольфа Дизеля

 

 

В 1893 году на весь мир прогремела брошюра, принадлежащая перу немецкого инженера Рудольфа Дизеля, с кричащим, сенсационным названием: " Теория и конструкция теплового двигателя, призванного заменить паровую машину и другие существующие в настоящее время двигатели".

Что же предлагал в своей брошюре Дизель? Он предлагал построить двигатель, который мог бы работать по циклу Карно. Однако уже после постройки первых моделей двигателя Дизель отошёл от многих предложений Карно и своих первоначальных замыслов, например, Дизель предлагал сжимать воздух до 250 атмосфер (огромное давление! ), но в первом опытном двигателе давление дошло только до 34 атмосфер. Дизель также предлагал использовать в качестве топлива угольную пыль, но ему пришлось заменить её парами бензина, из-за чего при первом пуске двигателя в нём произошёл такой взрыв, что сам изобретатель и его помощники чудом остались живы.

После первых двух моделей Дизель построил третью, на которую уже можно было что - либо нагружать. Её конструкция и принцип действия показаны на рисунке. Двигатели Дизеля работали на керосине, и их КПД был выше, чем у обычных ДВС. Работа дизель - мотора проходила по циклу, изображённому на рисунке на стр.12, и как можно заметить, сильно отличавшемуся от цикла, предложенного Карно.

Впоследствии, дизель-мотор постепенно совершенствовался, в том числе и русскими инженерами; было установлено, что двигатель может работать и в два такта. После усовершенствований двигатель стал очень распространённым.

Дальнейшая же судьба самого Дизеля загадочна. В 1913 году он отплыл на пароходе " Дрезден" из Антверпена в Англию. Однако в английский порт Харви пароход пришёл без Дизеля. Но, несмотря на это, дизели продолжили победное шествие: во время Великой Отечественной войны русские танки Т-34 с дизельным двигателем были быстрее, маневреннее немецких танков с бензиновым двигателем.

 

Газовая турбина

Газовая турбина была двигателем, совмещавшим в себе полезные свойства паровых турбин (передача энергии к вращающемуся валу непосредственно, без использования сложных механических передач) и ДВС (отсутствие парового котла и всего его сложного хозяйства).

Устройство газовой турбины показано на рисунке. Двигатель состоит из компрессора, подогревателя, камеры сгорания и собственно самой турбины. В компрессоре, по устройству не отличающемся от турбины, происходит сжатие окислителя (воздуха), в подогревателе - подогревание окислителя, в камере сгорания - смешивание его с топливом и сгорание. В турбине проходит передача энергии газов лопаткам рабочих колёс. Сама турбина устроена также, как и паровая: имеется и направляющий аппарат, и рабочие колёса с лопатками. Газовая турбина является сложным двигателем, при постройке которого не обойтись без сложных расчётов. Но она, а точнее её " гибрид" с реактивными двигателями - турбореактивный двигатель - открыл для современной авиации скорости, превышающие скорость звука. Газотурбинный двигатель также применяется на ТЭС, где есть дешёвое жидкое или газообразное топливо, но есть недостаток воды, из-за чего нельзя применить паровую турбину.

 

 

Реактивные двигатели

Реактивные двигатели имеют довольно длинную историю. Первые упоминания о китайских огненных стрелах относятся к 1232 году, т.е. почти 800 лет назад. Но этот ещё примитивное оружие служило больше для устрашения противника и в качестве зажигательного средства. С появлением огнестрельного оружия ракеты были забыты на 6 веков. Лишь в 1804 году английский офицер Уильям Конгрев усовершенствовал ракеты и наладил их массовое производство. В 1807 году английскими ракетами был сожжён Копенгаген - по городу было выпущено более 25 тысяч ракет! Но с появлением нарезного оружия реактивный двигатель получил отставку на столетие. Возрождение ракет к жизни связано с работой русского учёного К. Циолковского " Исследование космических пространств реактивными приборами". В этой работе была представлена конструкция космического аппарата с принципиально новым по конструкции реактивным двигателем - на жидком топливе. В 1914 году американцу Роберту Годдарду был выдан патент на конструкцию многоступенчатой ракеты. В 30 - е годы работы по совершенствованию ракет и реактивных двигателей шли уже в нескольких странах. Самых ощутимых результатов достигли немецкие исследователи под руководством Вернера фон Брауна и Клауса Риделя. Созданная в немецком ракетном центре Пенемюнде баллистическая ракета " Фау - 2" была вершиной ракетостроения на протяжении полутора десятка лет.

Циолковский не рекомендовал применять твёрдое топливо в ракетах, в частности порох, так как он обладает низкой удельной теплотой сгорания. Но всё же реактивные двигатели на твёрдом топливе были первой вехой в эпохе ракетостроения. Русский революционер Кибальчич, находясь в Петропавловской крепости после покушения на Александра II, предложил проект ракеты с пороховым реактивным двигателем.

Но позже было доказано, что жидкотопливные реактивные двигатели более совершенны, более мощны и, следовательно, более перспективны.

 

 

Простейшим типом реактивного двигателя на жидком топливе является прямоточный двигатель (на верхнем рисунке). Принцип работы прост: кислород воздуха, попав в камеру сгорания через входное устройство, смешавшись с топливом, окисляет его, а раскалённые газы, вылетая из сопла, толкают двигатель вперёд. По конструкции двигатель ничем не отличается от трубы аэродинамической формы с отверстиями для впрыска топлива и поджога горючей смеси. Такая примитивность и обусловливает недостатки этого двигателя: он имеет низкий КПД, а для его запуска необходим разгонный двигатель.

Прямоточный двигатель после добавления нескольких деталей превращается в пульсирующий - реактивный двигатель, сделанный по формуле " Дёшево и сердито". Он представляет собой трубу аэродинамической формы, разделённую двумя перегородками с клапанами на 3 отсека: входное устройство, камеру сгорания, сопло (нижний рисунок).

 


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 95; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.085 с.)
Главная | Случайная страница | Обратная связь