Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Ручная дуговая сварка покрытыми электродами
В зависимости от степени раскисленности стали, содержания углерода, а также условий сварки и требований, предъявляемых к металлу шва, для сварки углеродистых сталей применяют электроды с руднокислым, фтористокальциевым, рутиловым и органическим покрытиями. В зависимости от назначения конструкции и типа стали электроды можно выбирать согласно табл. 1. Режим сварки выбирают в зависимости от толщины, типа сварного соединения в пространственного положении сварки. При сварке корневых швов в разделке на металле толщиной 10 мм и более используют электроды диаметром 3—4 мм. Рекомендуемые для данной марки электрода значения сварочного тока, его род и полярность выбирают согласно паспорту электрода, в котором обычно приведены и его сварочно-технологические свойства, типичный химический состав шва и механические свойства. Рядовые и ответственные конструкции из низкоуглеродистых сталей сваривают электродами типа Э42 и Э46 (табл. 1 и 2). Таблица 1 –Марки электродов, применяемых при сварке низкоуглеродистых сталей
Таблица 2- Соответствие марок электродов типу электродов
В настоящее время электроды с руднокислым покрытием (ОММ-5, СМ-5, ЦМ-7) применяются редко. Электроды с фтористокальциевым покрытием (типа Э42А- марок УОНИ-13/45, СМ-11, УП-1/45, ЦУ-1; типа Э50- марок УОНИ-13/55 и др.) применяют при сварке низкоуглеродистых и среднеуглеродистых сталей. Возможно использование их и при сварке высокоуглеродистых сталей. При этом для понижения склонности к образованию кристаллизационных трещин содержание углерода в металле шва при сварке среднеуглеродистых и высокоуглеродистых сталей ограничивают, используя электроды, обеспечивающие необходимые свойства путем легирования наплавленного металла (главным образом кремнием и марганцем) при низком содержании углерода (обычно до 0, 13—0, 14%), а также путем уменьшения доли участия основного металла. Электроды с фтористокальциевым покрытием чувствительны к образованию пор при наличии на свариваемых кромках ржавчины, окалины или масла, при увлажнении покрытия и при случайном удлинении дуги. Подобные свойства электродов обусловлены особенностями шлаков, формирующихся на основе карбонатов и плавикового шпата, и высокой раскисленностью металла шва, что достигается за счет введения в состав покрытия ферромарганца, ферросилиция, а в некоторых случаях ферротитана и ферроалюминия. Металл шва, выполненного электродами с фтористокальциевым покрытием, — глубоко успокоенная сталь с содержанием 0, 3—0, 6% Si. Электроды с рутиловым покрытием (типа Э42- марок АНО-1 АНО-5, АНО-6; типа Э46- марок МР-3, ОЗС-4, ЦМ-9, АНО-3) используют в основном для сварки низкоуглеродистых сталей. Металл шва, полученный данными электродами, по своему качеству занимает промежуточное положение между металлами швов полученных электродами в рудиокислым и фтористокальциевым покрытиями. Электроды с покрытием рутилового типа мало склонны к образованию пор при сварке по загрязненной и окисленной поверхности, при колебаниях длины дуги. Пористость в металле шва обнаруживается при сварке сталей с повышенным содержанием кремния, при сварке на повышенной силе тока и сварке электродами, прокаленными при относительно высокой температуре. Сохранение определенной гарантированной влажности электродного покрытия позволяет обеспечить наименьшую предрасположенность металла шва к пористости. С этой целью рекомендуют отсыревшие электроды с рутиловым покрытием прокаливать при температуре 180—200° С в течение 1 ч и использовать электроды для сварки через сутки после прокалки. Шлаковую основу покрытия рутилового типа составляют рутил, алюмосиликаты, карбонаты. Газовая защита создается за счет разложения карбонатов и органических составляющих покрытия. Металл швов, выполненных электродами с рутиловым покрытием в зависимости от состава покрытия представляет собой полуспокойную или спокойную сталь. Раскисление металла шва осуществляется марганцем и кремнием. Источником марганца служит ферромарганец покрытия, кремний переходит в шов за счет развития кремниевосстановительного процесса. Содержание кислорода в металле шва обычно не превышает 0, 04—0, 08%. Электроды с органическим покрытием (типа Э42- марок ОМА-2, ВСП-1, ВСЦ-2) применяют относительно редко; их используют при сварке металла малых толщин, при сварке трубопроводов. При сварке электродами с покрытием органического типа защита расплавленного металла в основном обеспечивается газами, образующимися в результате разложения органических составляющих покрытия. При сварке низкоуглеродистых сталей обычно обеспечиваются достаточно высокие механические свойства сварного соединения и поэтому в большинстве случаев не требуются специальные меры, направленные на предотвращение образования в нем закалочных структур. Однако при сварке угловых швов на толстом металле и первого слоя многослойного шва для повышения стойкости металла против кристаллизационных трещин может потребоваться предварительный подогрев до температуры 120—150° С. Для сварки рядовых конструкций из низкоуглеродистых сталей применяют электроды типа Э42А, а ответственных — типа Э46. Это обеспечивает получение металла швов с достаточной стойкостью против кристаллизационных трещин и требуемыми прочностными и пластическими свойствами. Техника заполнения швов и определяемый ею термический цикл сварки зависят от предварительной термообработки стали. Сварка толстого металла каскадом и горкой, замедляя скорость охлаждения металла шва и околошовной зоны, предупреждает образование в них закалочных структур. Это же достигается при предварительном подогреве до температуры 150—200 °С. Поэтому эти способы дают благоприятные результаты на нетермоупрочненных сталях. При сварке термоупрочненных сталей для уменьшения разупрочнения стали в околошовной зоне рекомендуется сварка длинными швами по охлажденным предыдущим швам. Следует выбирать режимы сварки с малой погонной энергией. При этом достигается и уменьшение протяженности зоны разупрочненного металла в околошовной зоне. При исправлении дефектов в сварных швах низкоуглеродистых сталей повышенной толщины швами малого сечения вследствие значительной скорости охлаждения металл подварочного шва и его околошовной зоны обладает пониженными пластическими свойствами. Поэтому дефектные участки следует подваривать швами нормального сечения длиной не менее 100 мм или предварительно подогревать до температуры 150—200 °С.
Сварка под флюсом Автоматическую сварку обычно выполняют электродной паволокой диаметром 3—5 мм, полуавтоматическую проволокой диаметром 1, 2—2 мм. Равнопрочность соединения достигается за счет подбора соответствующих составов флюсов и электродных прополок и выбора режимов и техники сварки. При сварке низкоуглеродистых сталей в большинстве случаев применяют флюсы марок АН-348-А и ОСЦ-45, АН-60 и др. и низкоуглеродистые электродные проволоки марок Св-08 и Св-08А. При сварке ответственных конструкций, а также ржавого металла рекомендуется использовать электродную проволоку марки Св-08ГА. Использование указанных материалов позволяет получить металл шва с механическими свойствами, равными или превышающими свойства основного металла. Металл шва обладает малой склонностью к образованию пор и кристаллизационных трещин. Основу шлаковой системы флюсов АН-348-А и ОСЦ-45 составляют окислы марганца и кремния. Подобная композиция шлака обеспечивает переход элементов раскислителей кремния и марганца в сварочную ванну в результате развития на границе раздела шлак—металл кремне- и марганцевосстановительных процессов. Основной недостаток подобного способа введения элементов раскислителей в сварочную ванну заключается в загрязнении металла шва микроскопическими шлаковыми включениями (суммарное содержание кислорода в металле шва достигает 0, 05%). Это вызывает некоторое снижение пластических свойств металла шва и его ударной вязкости. Однако, несмотря на некоторое загрязнение металла шва шлаковыми включениями, применительно к низкоуглеродистым сталям пластические свойства металла шва характеризуются достаточно высоким уровнем (ан = 10-14 кгс-м/см ). Для придания определенных физико-технологических свойств (вязкости, температуры плавления, чувствительности к влаге и др.) в состав флюса вводят фтористый кальций. Малая склонность металла шва к образованию кристаллизационных трещин при сварке под высокомарганцовистыми флюсами обусловлена тем, что значительная часть серы при наличии в шлаке больших количеств МпО находится в виде соединения MnS. При сварке под высокомарганцовистыми флюсами-силикатами возможен переход фосфора из шлака в сварочную ванну. Во флюс фосфор попадает как примесь с марганцевой рудой. Поскольку фосфор понижает ударную вязкость металла шва, то при использовании высокомарганцовистых флюсов особенно необходимо следить за чистотой флюса по фосфору. Малая склонность к образованию пор в металле шва при наличии окалины или ржавчины на свариваемых кромках обусловлена наличием в шлаке (Si02) и (CaF2). Окись кремния понижает концентрацию свободной закиси железа в шлаке, благодаря чему уменьшается переход кислорода в сварочную ванну. Развитие кремневосстановительного процесса до известных пределов (по содержанию окалины или ржавчины) обеспечивает достаточный переход кремния в сварочную ванну. Тем самым предотвращается образование пор, вызванных выделением СО. Малая чувствительность к влаге, входящей в состав ржавчины, или адсорбированной, обусловлена наличием во флюсе фтористого кальция. Фтористый кальций понижает стабильность горения дуги и служит источником образования вредных фтористых газов. Для повышения стабильности горения дуги при питании ее переменным током необходимы источники с повышенным напряжением холостого хода (не ниже 65—70 В). Необходимой защиты зоны сварки от атмосферы воздуха и устойчивого протекания процесса достигают при определенной толщине слоя флюса, которую назначают в зависимости от мощности дуги (толщина слоя флюса составляет 25—35 мм при силе сварочного тока Iсв = 200-400 А и 45—60 мм при Iсв = 800-1200А). Формирование металла шва зависит от физического состояния флюса, пемзовидного или стекловидного. Пемзовидные флюсы (например, АН-60) обладают меньшей объемной массой, чем стекловидные (например, АН-348А), и поэтому плавятся легче. Это обеспечивает большую подвижность дуги и способствует формированию широких швов с малым усилением. Пемзовидные флюсы используют при сварке на большой скорости. Однако защитные свойства пемзовидного флюса ниже. Так, например, при сварке под стекловидным флюсом содержание азота в металле шва составляет 0, 0025%, а под пемзовндным 0, 038%. Пемзовидный флюс может вносить в зону дуги большее количество водорода (влаги), поэтому пемзовидные флюсы требуют более тщательного контроля влажности. Формирующая способность флюса зависит также от его грануляции, поскольку последняя определяет газопроницаемость флюса. С увеличением мощности дуги хорошее формирование шва сохраняется при обеспечении достаточной газопроницаемости. Поэтому с увеличением мощности дуги используют более крупнозернистый флюс. Режимы автоматической сварки под флюсом могут изменяться в широких пределах в зависимости от толщины свариваемых элементов, диаметра электрода, формы шва (прямолинейный, кольцевой), имеющегося оборудования и др. Металл швов, выполненных автоматической сваркой под флюсом, имеет достаточно высокие свойства: = 460-500мПа; = 26-32%. Керамические флюсы (К-2, КВС-19, К-11 и др.) используют для сварки низкоуглеродистых сталей. По сравнению с плавлеными флюсами керамические менее чувствительны к образованию пор при наличии на свариваемых кромках ржавчины и влаги. Однако керамические флюсы обладают меньшей прочностью, что затрудняет их многократное использование, и более чувствительны к режиму сварки. Применительно к сварке низкоуглеродистых сталей наиболее рационально и экономически оправдано использовать керамические флюсы для сварки ржавого и увлажненного металла, когда операция зачистки, обеспечивающая полное удаление ржавчины, вызывает значительные трудности. В конструкциях из низкоуглеродистых сталей наряду со сваркой с разделкой кромок широко применяется сварка стыковых швов и швов без разделки кромок. Увеличение доли основного металла в металле шва, характерное для этого случая, и некоторое увеличение содержания в нем углерода могут повысить прочностные свойства и понизить пластические свойства металла шва. Таблица 1 –Режимы сварки под флюсом
Примечание.Ток постоянный обратной полярности.
Режимы сварки низкоуглеродистых сталей зависят конструкции соединения, типа шва и техники сварки (Табл.1). Свойства металла околошовной зоны зависят от термического цикла сварки. При сварке угловых однослойных швов и стыковых и угловых швов на толстолистовой стали типа ВСтЗ на режимах с малой погонной энергией в околошовной зоне возможно образование закалочных структур с пониженной пластичностью. Предупредить это можно увеличением сечения швов или применением двухдуговой сварки. В зависимости от условий сварки и охлаждения свойства сварных соединений на низкоуглеродистых сталях изменяются в широких пределах. . Сварка в защитных газах Для сварки углеродистых сталей в качестве защитного газа используют углекислый газ, реже смеси инертного газа с кислородом или углекислым газом; инертные газы (аргон) практически не используют. Сварку в атмосфере инертных газов вольфрамовым электродом применяют для металла толщиной до 2 мм. Часто для исключения присадочной проволоки сваривают соединения с отбортовкой кромок. В качестве защитного газа используют в основном аргон, для повышения стабильности горения дуги, улучшения формирования шва и понижения чувствительности процесса к пористости из-за водорода применяют аргон с добавкой кислорода (до 5%) или углекислого газа (до 10%). Сварку плавящимся электродом применяют для металла толщиной более 0, 8 мм. Диаметр электродной проволоки выбирают в зависимости от толщины свариваемого металла в пределах 0, 5—3 мм. Сварку в атмосфере углекислого газа широко используют при изготовлении изделий из углеродистых сталей. В зависимости от толщины свариваемого металла применяют или неплавящийся— угольный или графитовый электрод (для толщин до 2 мм), или плавящийся электрод (для толщин свыше 0, 8 мм). Углекислый газ обеспечивает защиту металла в зоне сварки от атмосферы воздуха, но в то же время окисляет защищаемый металл. Окисление жидкого металла происходит в результате непосредственного взаимодействия металла с углекислым газом, а также с кислородом, образующимся в результате диссоциации углекислого газа: Окисление жидкого металла вызывает большие потери легирующих элементов из капель электродного металла, приводит к повышению содержания кислорода в металле сварочной ванны. В результате возрастает вероятность образования пор из-за выделения окиси углерода в процессе кристаллизации и снижаются механические свойства металла шва. Образование пор из-за выделения окиси углерода при сварке углеродистых сталей предотвращается, если металл шва содержит до 0, 12—0, 14% С, не ниже 0, 17—0, 20% Si, не ниже 0, 5—0, 8% Мп. При этом металл шва характеризуется малой склонностью к образованию кристаллизационных трещин и достаточно высокими механическими свойствами. Увеличение содержания углерода приводит к повышению вероятности образования кристаллизационных трещин. Повышение содержания кремния сверх 0, 45% понижает пластические свойства металла шва и также увеличивает вероятность образования кристаллизационных трещин. Вероятность их образования снижается при повышении содержания марганца до 1, 2%. В большинстве случаев при сварке низкоуглеродистых сталей беспористые швы указанного выше состава получают при применении кремнемарганцовистых электродных проволок Св-08Г2С и Св-08ГС, обеспечивающих малую загрязненность металла шва окисными включениями. Содержание окисных включений при сварке низкоуглеродистой стали проволокой Св-08ГС составляет 0, 014%, а проволокой Св-08Г2С 0, 009%. Меньшая загрязненность металла шва окисными включениями при сварке низкоуглеродистой стали проволокой Св-08Г2С обусловлена более рациональным содержанием кремния и марганца в металле шва (0, 23% Si, 0, 72% Мп), при котором продукты раскисления формируются в виде жидких силикатов. Процесс дуговой сварки в атмосфере углекислого газа менее чувствителен к ржавчине на свариваемых кромках по сравнению со сваркой под флюсом. Это обусловлено оттеснением газовой струей влаги, испаряющейся при сварке из ржавчины, и окислительными свойствами газовой среды. Однако подобный эффект достигается при использовании углекислого газа с малым содержанием паров воды. Использование углекислого газа с повышенным содержанием паров воды может привести к образованию пор в швах и снижению пластических свойств металла шва. В подобных случаях необходима предварительная осушка газов. Обычно для этой цели используют поглотители (хлористый кальций, силикагель и др.). На свойства металла шва (образование пор, механические свойства) большое влияние оказывают также загрязнения, имеющиеся на поверхности электродной проволоки: технологическая смазка (чаще всего мыло), антикоррозионная смазка (обычно нитрит натрия), ржавчина. Наиболее рациональный способ удаления поверхностных смазок — прокалка проволоки при температуре 150—250° С в течение 1, 5—2 ч. Ржавчину удаляют травлением или зачисткой перед прокалкой. Образование пор при сварке в углекислом газе возможно при нарушении газовой защиты: при чрезмерном удлинении дуги, наличии сквозняков, значительных зазоров в соединениях. Нарушение защиты приводит к повышению содержания кислорода и азота в металле шва и образованию пористости. Для сварки в углекислом газе используют проволоки рутилфлюоритного (ПП-АН4, ПП-АН9 и др.) и рутилового (ПП-АН8 и др.) типов. Применение порошковой проволоки взамен проволоки сплошного сечения позволяет также повысить устойчивость горения дуги, уменьшить разбрызгивание электродного металла, повысить пластические свойства металла и улучшить формирование швов. При применении порошковой проволоки необходимо иметь в виду, что увлажнение материала сердечника проволоки может привести к образованию пор. Прокалка проволоки при температуре 240—250°С позволяет предотвратить развитие указанных дефектов. При этом обеспечивается также удаление с поверхности проволоки технологической смазки. Сварку в атмосфере углекислого газа угольным или графитовым электродом выполняют на постоянном токе прямой полярности. При сварке на обратной полярности наблюдается науглероживание металла шва. Сварку плавящимся электродом выполняют на постоянном токе обратной полярности-. При сварке на прямой полярности снижается стабильность горения дуги и повышается разбрызгивание электродного металла. При сварке в углекислом газе наблюдается повышенное по сравнению с другими способами сварки разбрызгивание электродного металла (даже при сварке на обратной полярности при достаточной плотности тока). Некоторая часть капель расплавленного металла, вылетающих из зоны сварки, прилипает или сплавляется со свариваемой деталью, соплом горелки и токоподводящим мундштуком. Налипание капель на поверхность сопла и токоподводящего мундштука может нарушить равномерную подачу электродной проволоки, ухудшить газовую защиту, поэтому необходимо периодически очищать сопло и токоподводящий мундштук от брызг. В некоторых случаях требуется удаление прилипших капель с поверхности изделия. Снижению разбрызгивания электродного металла способствуют увеличение тока, уменьшение диаметра электродной проволоки и напряжения дуги. Для уменьшения прилипания капель к деталям горелки и поверхности свариваемого изделия иногда применяют противопригарные смазки, например, алюминиевую пудру, замешенную на жидком стекле, или смесь циркона с жидким стеклом и др. Добавки в углекислый газ аргона (75% Ar, 25% CO2) (иногда в эту смесь вводят кислород) изменяют технологические свойства дуги (глубину проплавления и форму шва, стабильность дуги и др.) уменьшают разбрызгивание электродного металла и позволяют регулировать концентрацию легирующих элементов в металле шва. В таблице 2 приведены режимы механизированной и автоматической сварки в углекислом газе Таблица 2 -Режимы механизированной и автоматической сварки в углекислом газе
Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 1744; Нарушение авторского права страницы