Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация.
Химико-термическая обработка стали Назначение и технология видов химико-термической обработки: цементации, азотирования нитроцементации и диффузионной металлизации Цементация Цементация в твердом карбюризаторе. Газовая цементация. Структура цементованного слоя Термическая обработка после цементации Азотирование Цианирование и нитроцементация Диффузионная металлизация 1. Химико-термическая обработка стали Химико-термическая обработка (ХТО) – процесс изменения химического состава, микроструктуры и свойств поверхностного слоя детали. Изменение химического состава поверхностных слоев достигается в результате их взаимодействия с окружающей средой (твердой, жидкой, газообразной, плазменной), в которой осуществляется нагрев. В результате изменения химического состава поверхностного слоя изменяются его фазовый состав и микроструктура, Основными параметрами химико-термической обработки являются температура нагрева и продолжительность выдержки. В основе любой разновидности химико-термической обработки лежат процессы диссоциации, адсорбции, диффузии. Диссоциация – получение насыщающего элемента в активированном атомарном состоянии в результате химических реакций, а также испарения. Например, Адсорбция – захват поверхностью детали атомов насыщающего элемента. Адсорбция – всегда экзотермический процесс, приводящий к уменьшению свободной энергии. Диффузия – перемещение адсорбированных атомов вглубь изделия. Для осуществления процессов адсорбции и диффузии необходимо, чтобы насыщающий элемент взаимодействовал с основным металлом, образуя твердые растворы или химические соединения. Химико-термическая обработка является основным способом поверхностного упрочнения деталей. Основными разновидностями химико-термической обработки являются: цементация (насыщение поверхностного слоя углеродом); азотирование (насыщение поверхностного слоя азотом); нитроцементация или цианирование (насыщение поверхностного слоя одновременно углеродом и азотом); диффузионная металлизация (насыщение поверхностного слоя различными металлами). 2. Назначение и технология видов химико-термической обработки: цементации, азотирования нитроцементации и диффузионной металлизации Цементация Цементация – химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя атомами углерода при нагреве до температуры 900…950 oС. Цементации подвергают стали с низким содержанием углерода (до 0, 25 %). Нагрев изделий осуществляют в среде, легко отдающей углерод. Подобрав режимы обработки, поверхностный слой насыщают углеродом до требуемой глубины. Глубина цементации (h) – расстояние от поверхности изделия до середины зоны, где в структуре имеются одинаковые объемы феррита и перлита ( h. = 1…2 мм). Степень цементации – среднее содержание углерода в поверхностном слое (обычно, не более 1, 2 %). Более высокое содержание углерода приводит к образованию значительных количеств цементита вторичного, сообщающего слою повышенную хрупкость. На практике применяют цементацию в твердом и газовом карбюризаторе (науглероживающей среде). Участки деталей, которые не подвергаются цементации, предварительно покрываются медью (электролитическим способом) или глиняной смесью. Цементация в твердом карбюризаторе. Почти готовые изделия, с припуском под шлифование, укладывают в металлические ящики и пересыпают твердым карбюризатором. Используется древесный уголь с добавками углекислых солей ВаСО3, Na2CO3 в количестве 10…40 %. Закрытые ящики укладывают в печь и выдерживают при температуре 930…950 oС. За счет кислорода воздуха происходит неполное сгорание угля с образованием окиси углерода (СО), которая разлагается с образованием атомарного углерода по реакции: Образующиеся атомы углерода адсорбируются поверхностью изделий и диффундируют вглубь металла. Недостатками данного способа являются: значительные затраты времени (для цементации на глубину 0, 1 мм затрачивается 1 час); низкая производительность процесса; громоздкое оборудование; сложность автоматизации процесса. Способ применяется в мелкосерийном производстве. Газовая цементация. Процесс осуществляется в печах с герметической камерой, наполненной газовым карбюризатором. Атмосфера углеродосодержащих газов включает азот, водород, водяные пары, которые образуют газ-носитель, а также окись углерода, метан и другие углеводороды, которые являются активными газами. Глубина цементации определяется температурой нагрева и временем выдержки. Преимущества способа: возможность получения заданной концентрации углерода в слое (можно регулировать содержание углерода, изменяя соотношение составляющих атмосферу газов); сокращение длительности процесса за счет упрощения последующей термической обработки; возможность полной механизации и автоматизации процесса. Способ применяется в серийном и массовом производстве. Структура цементованного слоя Структура цементованного слоя представлена на рис. 15.1. Рис. 15.1. Структура цементованного слоя
На поверхности изделия образуется слой заэвтектоидной стали, состоящий из перлита и цементита. По мере удаления от поверхности, содержание углерода снижается и следующая зона состоит только из перлита. Затем появляются зерна феррита, их количество, по мере удаления от поверхности увеличивается. И, наконец, структура становится отвечающей исходному составу. Термическая обработка после цементации В результате цементации достигается только выгодное распределение углерода по сечению. Окончательно формирует свойства цементованной детали последующая термообработка. Все изделия подвергают закалке с низким отпуском. После закалки цементованное изделие приобретает высокую твердость и износостойкость, повышается предел контактной выносливости и предел выносливости при изгибе, при сохранении вязкой сердцевины. Комплекс термической обработки зависит от материала и назначения изделия. Графики различных комплексов термической обработки представлены на рис. 15.2. Рис. 15.2. Режимы термической обработки цементованных изделий
Если сталь наследственно мелкозернистая или изделия неответственного назначения, то проводят однократную закалку с температуры 820…850oС (рис. 15.2 б). При этом обеспечивается получение высокоуглеродистого мартенсита в цементованном слое, а также частичная перекристаллизация и измельчение зерна сердцевины. При газовой цементации изделия по окончании процесса подстуживают до этих температур, а затем проводят закалку (не требуется повторный нагрев под закалку) (рис. 15.2 а). Для удовлетворения особо высоких требований, предъявляемых к механическим свойствам цементованных деталей, применяют двойную закалку (рис. 15.2 в). Первая закалка (или нормализация) проводится с температуры 880…900oС для исправления структуры сердцевины. Вторая закалка проводится с температуры 760…780oС для получения мелкоигольчатого мартенсита в поверхностном слое. Завершающей операцией термической обработки всегда является низкий отпуск, проводимый при температуре 150…180oС. В результате отпуска в поверхностном слое получают структуру мартенсита отпуска, частично снимаются напряжения. Цементации подвергают зубчатые колеса, поршневые кольца, червяки, оси, ролики. Азотирование Азотирование – химико-термическая обработка, при которой поверхностные слои насыщаются азотом. Впервые азотирование осуществил Чижевский И.П., промышленное применение – в двадцатые годы. При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость. При азотировании изделия загружают в герметичные печи, куда поступает аммиак NH3 c определенной скоростью. При нагреве аммиак диссоциирует по реакции: 2NH3> 2N+3H2. Атомарный азот поглощается поверхностью и диффундирует вглубь изделия. Фазы, получающиеся в азотированном слое углеродистых сталей, не обеспечивают высокой твердость, и образующийся слой хрупкий. Для азотирования используют стали, содержащие алюминий, молибден, хром, титан. Нитриды этих элементов дисперсны и обладают высокой твердостью и термической устойчивостью. Типовые азотируемые стали: 38ХМЮА, 35ХМЮА, 30ХТ2Н3Ю. Глубина и поверхностная твердость азотированного слоя зависят от ряда факторов, из которых основные: температура азотирования, продолжительность азотирования и состав азотируемой стали. В зависимости от условий работы деталей различают азотирование: для повышения поверхностной твердости и износостойкости; для улучшения коррозионной стойкости (антикоррозионное азотирование). В первом случае процесс проводят при температуре 500…560oС в течение 24…90 часов, так как скорость азотирования составляет 0, 01 мм/ч. Содержание азота в поверхностном слое составляет 10…12 %, толщина слоя (h) – 0, 3…0, 6 мм. На поверхности получают твердость около 1000 HV. Охлаждение проводят вместе с печью в потоке аммиака. Значительное сокращение времени азотирования достигается при ионном азотировании, когда между катодом (деталью) и анодом (контейнерной установкой) возбуждается тлеющий разряд. Происходит ионизация азотосодержащего газа, и ионы бомбардируя поверхность катода, нагревают его до температуры насыщения. Катодное распыление осуществляется в течение 5…60 мин при напряжении 1100…1400 В и давлении 0, 1…0, 2 мм рт. ст., рабочее напряжение 400…1100 В, продолжительность процесса до 24 часов. Антикоррозионное азотирование: в жидких средах состава 40% КСNO + 60% NaCN (тенифер-процесс) при температуре 500…560oС 0, 5…2 часа, при этом повышаются усталостная прочность и коррозионная стойкость. Недостатком является этого способа высокая токсичность и стоимость цианистых солей. Цианирование и нитроцементация. Высокотемпературное цианирование – проводится при температуре 800…950oС, сопровождается преимущественным насыщением стали углеродом до 0, 6…1, 2 %, (жидкостная цементация). Содержание азота в цианированном слое 0, 2…0, 6 %, толщина слоя 0, 15…2 мм. После цианирования изделия подвергаются закалке и низкому отпуску. Окончательная структура цианированного слоя состоит из тонкого слоя карбонитридов Fe2(C, N), а затем азотистый мартенсит. По сравнению с цементацией высокотемпературное цианирование происходит с большей скоростью, приводит к меньшей деформации деталей, обеспечивает большую твердость и сопротивление износу. Низкотемпературное цианирование – проводится при температуре 540…600oС, сопровождается преимущественным насыщением стали азотом Проводится для инструментов из быстрорежущих, высокохромистых сталей, Является окончательной обработкой. Основным недостатком цианирования является ядовитость цианистых солей. Нитроцементация – газовое цианирование, осуществляется в газовых смесях из цементующего газа и диссоциированного аммиака. Состав газа температура процесса определяют соотношение углерода и азота в цианированном слое. Глубина слоя зависит от температуры и продолжительности выдержки. Высокотемпературная нитроцементация проводится при температуре 830…950oС, для машиностроительных деталей из углеродистых и малолегированных сталей при повышенном содержании аммиака. Завершающей термической обработкой является закалка с низким отпуском. Твердость достигает 56…62 HRC. На ВАЗе 95 % деталей подвергаются нитроцементации. Низкотемпературной нитроцементации подвергают инструмент из быстрорежущей стали после термической обработки (закалки и отпуска). Процесс проводят при температуре 530…570oС, в течение 1, 5…3 часов. Образуется поверхностный слой толщиной 0, 02…0, 004 мм с твердостью 900…1200 HV. Нитроцементация характеризуется безопасностью в работе, низкой стоимостью.
Диффузионная металлизация Диффузионная металлизация – химико-термическая обработка, при которой поверхность стальных изделий насыщается различными элементами: алюминием, хромом, кремнием, бором и др. При насыщении хромом процесс называют хромированием, алюминием – алитированием, кремнием – силицированием, бором – борированием. Диффузионную металлизацию можно проводить в твердых, жидких и газообразных средах. При твердой диффузионной метализации металлизатором является ферросплав с добавлением хлористого аммония (NH4Cl). В результате реакции металлизатора с HCl или CL2 образуется соединение хлора с металлом (AlCl3, CrCl2, SiCl4), которые при контакте с поверхностью диссоциируют с образованием свободных атомов. Жидкая диффузионная металлизация проводится погружением детали в расплавленный металл (например, алюминий). Газовая диффузионная металлизация проводится в газовых средах, являющихся хлоридами различных металлов. Диффузия металлов протекает очень медленно, так как образуются растворы замещения, поэтому при одинаковых температурах диффузионные слои в десятки и сотни раз тоньше, чем при цементации. Диффузионная металлизация – процесс дорогостоящий, осуществляется при высоких температурах (1000…1200oС) в течение длительного времени. Одним из основных свойств металлизированных поверхностей является жаростойкость, поэтому жаростойкие детали для рабочих температур 1000…1200oС изготавливают из простых углеродистых сталей с последующим алитированием, хромированием или силицированием. Исключительно высокой твердостью (2000 HV) и высоким сопротивлением износу из-за образования боридов железа (FeB, FeB2) характеризуются борированные слои, но эти слои очень хрупкие. Контрольные вопросы. 1.Почему при высокотемпературном цианировании сталь в большей степени насыщается углеродом, а при низкотемпературном - азотом? 2.Преимущества цианирования по сравнению с цементацией и азотированием. 3. Какие стали можно цементировать? 4. Почему при азотировании поверхность стали получает очень высокую твёрдость и износоустойчивость? 5.Преимущества азотирования по сравнению с цементацией. Недостатки его. 6.Что произойдёт, если при цементации детали будут касаться друг друга? 7.Выше какой критической точки ведётся нагрев стали при цементации? 8. Чем объясняется высокая твёрдость цементированного слоя? 9. В результате каких способов диффузной металлизации снижается трение? 10. В результате какой обработки можно повысить долговечность измерительных инструментов? 1.Используя диаграмму Fe-Fe3C и зная, что цементация проводилась при температуре 930 0С, нарисуйте схему изменения структуры от поверхности к середине после охлаждения детали, если исходное содержание углерода в стали было 0, 2 %, содержание углерода в поверхностном слое 1, 0 %. 2. Ответственное изделие было изготовлено из крупнозернистой углеродистой стали с 0, 15 % С. Подумайте, какой режим термообработки обеспечит оптимальные свойства изделия, если цементация проводилась при 950 0С и содержание углерода в поверхностном слое 0, 9 %.
Лекция 11 Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 1887; Нарушение авторского права страницы