Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии 


КРАТКИЕ СВЕДЕНИЯ О ВЕСТИБУЛЯРНОМ АНАЛИЗАТОРЕ




Авиационная медицина

Тема № 1. Особенности летного труда

Вопросы:

Особенности летной деятельности.
Значение нервно-психического фактора в летной деятельности.
Воздействие физических факторов внешней среды на организм:
Изменения барометрического давления, парциального давления кислорода, температуры и влажности воздуха, вибраций, шумов.
Влияние перегрузок.
Меры защиты против влияния отрицательных факторов, возникающих во время полета: полетная одежда, герметическая кабина, обогрев, вентиляция, кислородное питание.
Приспосабливаемость организма человека к изменению факторов внешней среды.
Значение для летного состава общей и специальной тренировки, режима труда, отдыха и питания.

Тема № 2. Влияние высоты полета на организм летчика

Вопросы:

Основные факторы неблагоприятного воздействия на организм летчика при подъеме на высоту.
Парциальное давление кислорода при подъеме на высоту в атмосфере и в альвеолярном воздухе и его значение для насыщения крови кислородом.
Кислородное голодание.
Граница безопасности полета без дополнительного кислородного питания.
Влияние кислородного голодания на центральную нервную систему, органы дыхания.
Влияние перепадов барометрического давления на организм человека.
Декомпрессионные расстройства, их причины и признаки.
Меры предупреждения декомпрессионных расстройств.
Факторы, понижающие и повышающие высотную устойчивость организма, высотная адаптация.
Физиолого-гигиенические основы устройства современной кислородно-дыхательной аппаратуры.
Режим отдыха и питания при выполнении полетов на больших высотах.

Тема № 3. Влияние перегрузок на организм летчика

Вопросы:

Виды перегрузок.
Перегрузки при криволинейном полете, функциональные изменения в организме под влиянием перегрузок.
Влияние перегрузок на кровообращение, центральную нервную систему, вестибулярный аппарат, мышечный и опорно-связочный аппарат.
Расстройство зрения.
Допустимые пределы перегрузок.
Мероприятия по повышению устойчивости организма к перегрузкам.
Противоперегрузочные костюмы.

Тема № 4. Пути и средства повышения работоспособности и выносливости

Вопросы:

Влияние общего физического состояния летчика на качество летного труда.
Утомление, его причины, проявление и способы предупреждения.
Самоконтроль летчика за состоянием здоровья перед полетом, в полете и после него.
Умение отличать физическую усталость от патологического состояния организма.
Нормы летной нагрузки.
Рациональный режим питания.
Физиологические требования к питанию летного состава.
Состав пищи и режим питания и их зависимость от характера выполняемых полетов.
Физиологические основы рационального распорядка дня летного состава.
Активный и пассивный отдых.
Сон и его значение.
Предполетный отдых.

Тема № 5. Медицинский контроль за летным составом и его значение в повышении безопасности полетов

Вопросы:

Медицинский контроль за летным обмундированием.
Гигиенический контроль за воздухом кабин самолетов.
Медицинский контроль за питанием летного состава и особенности организации питания летного состава.
Медицинский контроль за физической подготовкой летного состава.
Медицинское обеспечение работ по спасению экипажей, терпящих бедствие.

Тема № 6. Самопомощь и взаимопомощь

Вопросы:

Самопомощь и взаимопомощь с использованием самолетной аптечки, носимого аварийного запаса и подручных средств.
Виды кровотечений.
Способы остановки кровотечения.
Правила наложения жгутов и повязок при ранениях.
Первая помощь при переломах костей.
Первая помощь при ожогах и обморожениях.
Оказание первой помощи при поражениях, полученных в результате применения атомного оружия и отравляющих веществ.

 

ОСОБЕННОСТИ ЛЕТНОГО ТРУДА

ФИЗИОЛОГО-ГИГИЕНИЧЕСКИЕ АСПЕКТЫ БЕЗОПАСНОСТИ ПОЛЕТОВ ПРИ ВОЗДЕЙСТВИИ ФАКТОРОВ ВНЕШНЕЙ СРЕДЫ НА ОРГАНИЗМ ЧЕЛОВЕКА

ОБЩИЕ ПОЛОЖЕНИЯ

На условия полета существенно влияет окружающая самолет среда, в том числе атмосферное давление и ряд других факторов. Организм человека сохраняет свою жизнедеятельность лишь в пределах небольших отклонений от нормальных условий, которые имеют место на земле. Для сохранения работоспособности на высоком уровне организм человека должен постоянно получать достаточное количество кислорода с вдыхаемым воздухом и находиться в соответствующих условиях в самолете.

На уровне моря в составе воздуха содержатся основные газы в следующих соотношениях: азота 78,08 %, кислорода 20,95 %, аргона 0,93 %, углекислого газа 0,03 %. Кислород в атмосферном воздухе содержится в виде трех форм: молекулярной, атомарной и в виде озона. Наличие молекулярного кислорода в атмосферном воздухе имеет большое биологическое значение: кислород обеспечивает необходимые условия для поддержания жизни. Благодаря молекулярному кислороду осуществляются окислительно-восстановительные процессы в организме человека.

Атмосферное давление понижается по мере подъема на высоты. С уменьшением атмосферного давления понижается и парциальное давление кислорода. Под парциальным давлением какого-либо газа в газовой смеси понимается часть общего давления газовой смеси, приходящаяся на его долю. На высотах организм человека подвергается комплексному воздействию следующих неблагоприятных факторов: пониженного парциального давления кислорода, низкого атмосферного давления, низкой температуры воздуха, лучистой энергии, измененной влажности и др.

Помимо указанных факторов внешней среды как среды обитания пилоты в самолетах подвергаются еще и действию таких факторов, которые обусловлены динамикой полета и пребыванием их в относительно замкнутых объемах малого размера, например, вибрации, шумов, ускорения, относительной гиподинамии и относительной изоляции от внешнего мира. Наиболее неблагоприятными из вышеуказанных факторов являются пониженное парциальное давление кислорода и снижение общего атмосферного давления, которые во многом являются лимитирующими факторами.

Низкие атмосферное давление и температура окружающего воздуха неблагоприятно действуют на человека, поднимающегося на высоту в открытой не загерметизированной кабине.

Уровень безопасности полетов, качество и надежность деятельности пилота как оператора в эргатической системе «экипаж - самолет - среда» во многом зависит от состояния организма и его работоспособности.

Особенностью летного труда является то, что он осуществляется в отрыве от земли, на малых, больших высотах и в стратосфере, при разных скоростях полета и при различной продолжительности, в простых и сложных метеорологических условиях, с быстрой сменой различных климатических условий. По своему характеру летный труд является умственно-физическим, эмоционально насыщенным и достаточно напряженным. Управляющий самолетом пилот (оператор) не является просто звеном передачи информации от индикаторов к органам управления, а действует сознательно, имеет свое личное отношение к выполняемым действиям. Воздействие на самолет пилот осуществляет посредством дистанционного управления. Оценку положения самолета в пространстве пилот осуществляет как визуально по земным ориентирам, так и по приборам. Для летной деятельности характерным является вынужденный темп работы нередко в сложных ситуациях при недостатке времени. Пилот осуществляет действия на различных скоростях в строго определенном порядке по этапам полета (взлет, полет, посадка), с различным количеством операций на каждом этапе полета, при достаточно высоком темпе восприятия и переработки информации. Пилот в течение всего полета вынужден воспринимать информацию из двух источников: с приборной доски и из пространства за кабиной экипажа. При взлетах и посадках информация также поступает от диспетчерской службы по каналам связи.

Основную часть информации (85-90 %) пилот получает через зрительный анализатор. Условия труда пилотов во многом зависят от типа самолета, состояния атмосферы, особенностей систем жизнеобеспечения и возможностей наземных средств управления полетами.

Эффективность функционирования эргатической системы «экипаж - самолет - среда» может быть достаточно высока, если в ней обеспечено оптимальное соответствие и сбалансированность всех составляющих эту систему частей. Это предполагает, с одной стороны, высокую квалификацию пилота-оператора, с другой - такие технические характеристики элементов самолета, физиолого-гигиенические условия размещения пилотов, такое необходимое оборудование, которые будут находиться в соответствии с психофизиологическими данными пилота. При этом факторы внешней среды не должны оказывать неблагоприятного воздействия как на пилота-оператора, понижая его работоспособность, так и на самолет.

В оптимизации летного труда имеют большое значение компоновка рабочих мест с органами управления и приборами контроля в кабине экипажа, организация соответствующего микроклимата и подготовка экипажа к пользованию аварийными средствами в экстремальных условиях. Проведение в жизнь всех этих мероприятий преследует единую цель, направленную на то, чтобы летная работа совершалась более эффективно с минимальным числом ошибок и с высоким уровнем безопасности полетов. Касаясь понятия «внешняя среда вокруг пилота», необходимо принимать во внимание весь тот диапазон внешних факторов (атмосферное давление, недостаток кислорода в воздухе, температура, влажность и др.), в условиях которых происходит работа членов экипажа по эксплуатации самолета.

Важное место среди особенностей условий труда членов экипажей в аспекте безопасности полетов занимают особенности с точки зрения потребностей в кислородном обеспечении.

Полеты самолетов по высоте делятся на полеты, совершаемые на малых высотах (до 600 м), на средних высотах (от 0,6 до 6 км) и на больших высотах (от 6 км и выше). Полеты по времени суток делятся на дневные, ночные и смешанные. По назначению полеты бывают учебными, тренировочными, транспортными, по применению авиации в народном хозяйстве, исследовательскими, испытательными, перегоночными, поисковыми, аварийно-спасательными и др. По продолжительности они могут быть кратковременными, средней продолжительности и длительными. По условиям пилотирования полеты делятся на визуальные и полеты по приборам. Имеют место и ряд других видов полётов, но они не имеют существенного значения для нашего анализа.

 

ВЛИЯНИЕ ПЕРЕГРУЗОК

ФИЗИЧЕСКАЯ ПОДГОТОВКА

Известно, что физически крепкие летчики, систематически занимающиеся различными видами спорта, более устойчивы к воздействию радиальных ускорений. Поэтому физическая подготовка летного состава должна способствовать укреплению общего физического состояния и тренировке регуляторных механизмов кровообращения.

В этом плане весьма эффективны физические упражнения, рассчитанные на тренировку сердечно-сосудистой системы, нервных регуляторов кровообращения, а также мышц брюшного пресса и нижних конечностей. Поэтому кроме легкой атлетики и спортивных игр следует заниматься снарядовой гимнастикой (вращающиеся качели, батут, спортивные колеса, гимнастическая стенка, турник). Рекомендуется также ходьба на лыжах, катание на коньках, плавание.

Во время спортивных занятий и специальных тренировок следует уделять внимание правильной постановке дыхания. Очень важно научить занимающихся перестраивать дыхание с брюшного на грудное, так как под влиянием ускорения мышцы брюшного пресса напрягаются и брюшное дыхание ограничивается

Целенаправленная физическая подготовка должна занимать одно из важных мест в комплексе мероприятий по повышению устойчивости летчика к воздействию ускорения.

 

ЛЕТНАЯ ТРЕНИРОВКА

Систематическая летная тренировка является наиболее действенным фактором, повышающим устойчивость организма к ускорениям. Она дает исключительно благоприятные результаты при постепенном увеличении ускорения и усложнении пилотажа. В процессе полетов не только совершенствуются летные навыки и техника пилотирования, но и тренируются сердечно-сосудистая система и нервно-рефлекторные механизмы, регулирующие кровяное давление

В ходе летной тренировки летчик привыкает к воздействию ускорений, приобретает способность правильно оценивать свое состояние при ускорениях и спокойно к этому воздействию относиться. Кроме того, у летчика вырабатываются условные рефлексы, благодаря которым еще до возникновения ускорения в организме начинают действовать компенсаторные механизмы, способствующие улучшению переносимости ускорений.

 

ПИТАНИЕ ЛЕТНОГО СОСТАВА

ОБЩИЕ ПОЛОЖЕНИЯ

Скорость движения - один из основных показателей развития транспортных средств. Авиация в этом отношении имеет огромное преимущество по сравнению с другими видами транспорта. Одновременно с большой скоростью полеты на воздушных судах сопровождаются воздействием на человека механических факторов, связанных с физическими закономерностями скоростного перемещения в пространстве.

Ускорения и перегрузки, будучи следствием изменения скорости, достигают таких величин, от которых необходима эффективная защита в целях обеспечения безопасности полетов. Разработка и применение средств и методов сохранения работоспособности и повышения переносимости человеком механических факторов не представляется возможной без предварительного изучения влияния на организм и определения допустимых пределов в конкретных условиях их возникновения.

Скорость, как известно, не оказывает на организм непосредственного влияния. Примером может служить отсутствие каких-либо ощущений при движении с постоянной скоростью в наземных транспортных средствах, самолетах и космических кораблях, а также от вращения земли со скоростью 940 км/ч и ее движения по орбите примерно со скоростью 30 км/с.

Сказанное справедливо в тех случаях, когда организм при движении защищен от соприкосновения со средой, внутри которой происходит движение. Так при перемещении относительно земной поверхности человек должен быть защищен от действия встречного потока воздуха. При движении в воде должен быть огражден от соприкосновения с ней. Только в таких условиях равномерная скорость может быть индиферентным раздражителем и не будет вызывать соответствующих реакций.

Влияние скорости, однако, не безразлично и в тех случаях, когда человек вынужден управлять движением. Он должен реагировать на меняющуюся обстановку в окружающей среде, воспринимать и опознавать встречные предметы, а в случае необходимости изменять направление движения. При этом, чем больше скорость, тем труднее контролировать перемещение в пространстве. При подаче какого-либо регулирующего сигнала или возникновении препятствия необходимо выполнение соответствующих управляющих действий, требующих затраты определенного времени. Как известно, для самой простейшей ответной реакции человека (например, нажатие на кнопку при условии, что она находится под кистью руки), необходимо время не менее 0,2 с. А если задача усложняется переносом руки, необходимостью принятия решений, выбором последовательности или повторяемости действий, то время реакции неизбежно увеличивается. Кроме того, ко времени, необходимому для выполнения управляющих действий, будет прибавляться время, необходимое для изменения характера движения управляемого аппарата, а в данном случае самолета.

При посадочной скорости полета 300 км/ч, самолет проходит за каждую секунду путь, примерно равный 85 м. Если на этой скорости пилот получит сигнал или обнаружит препятствие на расстоянии 40-50 м, то для обеспечения безопасности полета он должен принять решение и выполнить управляющие действия в пределах 0,5 с, так как через этот промежуток времени самолет будет на уровне сигнала или препятствия. Следовательно, в приведенном примере расстояние 40-50 м будет так называемой «слепой зоной», в пределах которой человек по своим психофизиологическим показателям не может активно контролировать управление движением. С увеличением скорости полета расстояние «слепой зоны» за тот же промежуток времени будет больше (пропорционально скорости движения). Увеличение скорости полета уменьшает время реагирования при управлении полетом или увеличивает расстояние, на котором требуется восприятие и опознавание сигнала и выполнение действий. В случае встречного движения «слепая зона» суммируется пропорционально скорости полета каждого из самолетов.

Известно, что восприятие и опознавание сигналов и предметов на расстоянии зависит от времени суток, освещенности, погодных условий, характера и размера сигнала или предметов, их контраста с фоном и т. д. Поэтому для повышения безопасности полетов современных и перспективных скоростных самолетов осуществляется разработка и применение автоматических приборов, помогающих органам чувств человека или в определенной мере их заменяющих.

Движение всех транспортных средств, в том числе самолетов, в зависимости от взлета, посадки, режима работы двигателей, маневров в полете и т. д., осуществляется с неравномерной скоростью.

Изменение скорости по величине или направлению в единицу времени называется ускорением.

Единицами отсчета ускорений могут быть сантиметр или метр в секунду в квадрате (см/с2 или м/с2). В современной литературе принято обозначать ускорения единицами g, кратными ускорению свободно падающего тела (9,81 м/с2).

В случае прямолинейного движения изменение скорости, т. е. ускорение или торможение в единицу времени на отрезке пути, определяется отношением разности скоростей (Vi, Vo) ко времени (t) или разности их квадратов к удвоенному пути

Криволинейное движение по окружности с радиусом R в плоскости, перпендикулярной оси вращения, может быть равномерным или неравномерным. При равномерном движении на тело действует центростремительная сила, определяющая движение по окружности. В направлении к центру окружности в зависимости от скорости возникает центростремительное ускорение.

Неравномерное движение связано с действием силы, направленной касательно окружности. Примером такого движения может быть разгон или остановка центрифуги. В этом случае центростремительное ускорение суммируется с ускорением тангенциальным. Тангенциальное ускорение может быть определено математически как составляющее равнодействующую ускорения, вызванного центростремительной и касательной силами. Вращение тел вокруг оси, проходящей внутри тел, как правило, оценивается по. угловой скорости. Изменение угловой скорости движения вызывает угловое ускорение, измеряемое в градусах или радианах в секунду в квадрате (град/с2 или рад/с2), пропорционально разности угловых ускорений в единицу времени

В тех случаях, когда под действием внешней силы тело, совершая равномерное криволинейное движение по отрезку окружности, одновременно удаляется от центра окружности или приближается к нему, возникает так называемое добавочное или поворотное ускорение. В случае действия такого ускорения на организм человека его называют ускорением Кориолиса по имени автора, впервые его изучившего.

Наибольшая величина ускорения Кориолиса при прочих равных условиях будет при отклонении тела от оси вращения на угол 90 °. Если же изменение радиуса вращения происходит строго по оси вращения, т. е. угол равен нулю, то дополнительное ускорение будет суммироваться с центростремительным.

В авиационной практике ускорение Кориолиса может возникать при отклонениях верхней части туловища и головы пилота в момент изменения направления полета, в этих случаях у лиц со слабой статокинетической устойчивостью могут возникать вестибулярные расстройства. Устойчивость пилотов к ускорениям Кориолиса проверяется во время врачебно-летной экспертизы специальными пробами на кресле Барани.

При всех видах ускорений механические силы, вызывающие дополнительную скорость, передают телу кинетическую энергию, которая по законам механики не безразлична для внутренних связей движущегося тела.

Инерция - это свойство тел сохранять свое состояние покоя или прямолинейное равномерное движение. Чем больше сила, вызывающая нарушение первоначального состояния тела, тем больше поглощается им энергии, а, следовательно, сильнее проявляется инерция

Инерция, как и гравитация, имея свойство поля сил, возникает непосредственно в каждой единице массы. Внутри тела, в особенности, если оно не однородно, происходит различная степень смещения его частей, возникает механическое напряжение связей и различная степень деформации

Все разрушения движущихся тел преимущественно при встрече препятствий являются следствием инерции, возникающей при ускорении или торможении

В авиационной практике влияние инерции на конструкцию самолетов в результате действия аэродинамических сил и тяги двигателей принято называть перегрузкой. Если к движущемуся телу будет приложено две или несколько сил одновременно, то ускорения будут приложены по их равнодействующей, а перегрузка - в строго противоположном направлении Этим объясняется смещение незакрепленных предметов внутри транспортных средств в противоположном изменению скорости на правлении (при резком торможении - вперед по направлению движения, а при увеличении скорости или при поворотах - в противоположном движению направлении)

Параметры перегрузки - величина, скорость нарастания и продолжительность - пропорциональны действующей на тело внешней силе. Отсюда следует, что для полной оценки влияния ускорений и перегрузок необходимо знать их продолжительность и скорость нарастания, т. е. третью производную пути по времени, обозначаемую для ускорений в метрах в секунду в кубе (м/с3), а для перегрузок - единицей в секунду (1/с). В зависимости от скорости нарастания перегрузка может быть плавно увеличивающейся или резко возрастающей (ударной). Скорость нарастания перегрузок определяется путем деления максимальной величины перегрузки на время ее достижения:

На схеме Рис. 1показана кривая изменения перегрузки по времени.

Рис. 1 Изменение перегрузки - по времени

Площадь этой кривой характеризует величину энергии, передаваемой ускоряемому телу.

Многочисленные исследования показывают, что переносимость человеком перегрузок зависит не только от их параметров, но и от целого ряда других условий. Поэтому оценку уровней устойчивости человека к перегрузкам необходимо рассматривать с позиций биомеханики, т. е. параллельно учитывать как физические, так и биологические процессы, влияющие на механическое напряжение и состояние структур тела, физиологические и психологические изменения и условия воздействия механической энергии на организм. Такая оценка влияния перегрузок на организм человека должна охватывать следующие показатели: величину перегрузки, ее продолжительность, скорость нарастания и спада, время пика, положение тела, направление вектора перегрузки, средства противоперегрузочной защиты, условия окружающей среды, индивидуальную устойчивость, мотивацию, физическую подготовку и тренировку.

Организм человека представляет собой сложную биологическую систему, а не однородную массу. Ткани тела обладают не одинаковой упругостью, вязкостью, эластичностью, имеются воздухоносные и заполненные жидкостью полости, внутренние органы имеют различную плотность и особенности крепления, части тела разнообразны по размерам, форме и тяжести. Отсюда следует, что воздействие перегрузки на живой организм вызывает чрезвычайно разнообразные механические изменения и степень физического напряжения органов и тканей. Одни ткани реагируют сжатием, другие растяжением, третьи - смещением, кручением, изгибом и т. д., вызывая в организме различные функциональные изменения. Естественно, что наибольшей деформации при перегрузках подвергаются ткани и органы, которые имеют большую массу и эластичность, а механическое напряжение испытывают в большей мере опорные элементы тела. В случае превышения прочности отдельных тканей, органов, опорных структур, их креплений неизбежно возникает их повреждение. Степень повреждения, так же как и изменение или нарушение физиологических функций в значительной мере зависит от физических характеристик перегрузки.

Величина перегрузки определяет отношение величины механического напряжения структур ускоряемого тела к величине напряжения в состоянии покоя. Покоящееся на опоре тело испытывает действие силы земного притяжения и силы сопротивления опоры, в результате чего его структуры испытывают напряжение. Величина механического напряжения покоящегося тела принята за единицу и является уровнем отсчета. Измерить механическое напряжение структур живого организма практически невозможно, поэтому для определения величины перегрузки используют другие сопряженные величины - ускорение, силу, вес.

Учитывая биомеханические особенности воздействия перегрузок на организм и значение многих факторов, влияющих на переносимость, практически исключается возможность точного разграничения их влияния в зависимости от конкретных величин. Поэтому в общем виде величины перегрузок могут быть разделены на три группы:

- малые и средние - заведомо переносимые при широком диапазоне различий в других параметрах;

- большие - переносимые при определенных условиях или оптимальных величинах других характеристик;

- критические - находящиеся на грани патологических последствий и выживаемости.

В живом организме, помимо чисто физических процессов, в ответ на механическое воздействие возникают физиологические реакции, направленные на уравновешивание изменившихся условий. Влияние этих реакций на общее состояние организма, безусловно, будет усиливаться при увеличении продолжительности воздействия перегрузки.

Общепринятой классификации ускорений по продолжительности не существует. Поэтому, вероятно, следует различать три временные группы перегрузок:

- длительные - воздействующие на организм секунды или минуты в пределах малых и средних величин;

- кратковременные - действующие десятые доли секунды, которые при использовании средств защиты могут достигать сравнительно больших величин;

- мгновенные - исчисляемые в сотых долях секунды или в миллисекундах.

Кратковременные перегрузки приближаются к действию внешних сил и характеризуются преимущественно локальным эффектом. Мгновенные перегрузки полностью утрачивают свойство поля сил, практически отсутствует их время действия, имеется только пик нарастания, представляющий собой толчок, удар. Повреждающее действие таких перегрузок воспринимается поверхностью тела и распространяется вглубь него в виде волны, подобно удару движущимся телом по неподвижному.

Оценка мгновенных перегрузок по их величине, вероятно, отличается значительной неточностью. Поэтому целесообразно их величину, т. е. степень механического напряжения, определять по мощности, затрачиваемой механической энергии в единицу времени.

Основным результатом воздействия кратковременных и мгновенных перегрузок являются микро- и макроструктурные изменения. Степень травматических повреждений при прочих равных условиях и одинаковых перегрузках зависит от площади приложения механических сил. Экспериментально доказано, что чем больше участок тела, на который воздействует сила, тем выше устойчивость человека к перегрузкам. Причиной этого является меньшее удельное давление на единицу поверхности тела. Существенное значение имеют и анатомо-физиологические особенности того участка тела, через который воспринимается перегрузка.

Механическое напряжение структур ускоряемого тела зависит от скорости нарастания перегрузки. Чем больше скорость нарастания, тем быстрее возникают изменения, вызываемые перегрузкой. Отсюда вытекает ее биологическое значение как адекватного раздражителя механорецепторов в организме человека. При кратковременных и мгновенных перегрузках большая скорость нарастания всегда усиливает болевой и травмирующий эффект их действия.

Классификация перегрузок по скорости нарастания вызывает справедливые возражения, так как отсутствуют достаточно убедительные факты, на основании которых можно было бы систематизировать скорость нарастания перегрузок по физиологическим показателям.

Ориентировочно все разнообразие перегрузок, встречающееся в авиации, можно разделить на три категории по скорости их нарастания:

- перегрузки, медленно нарастающие - единицы в секунду;

- перегрузки, быстро нарастающие - десятки единиц в секунду;

- перегрузки ударные - сотни, тысячи единиц в секунду.

Следует отметить, что когда речь идет о влиянии перегрузки на живой организм, то для полной характеристики механического воздействия всегда необходимо указывать не только на величину перегрузки, но и на ее продолжительность и скорость нарастания. Только все три параметра дают полное представление о перегрузке как факторе полета. Для оценки переносимости перегрузки человеком необходимо и точное указание ее направления по отношению к телу.

Различная переносимость перегрузок в зависимости от направления к продольной оси тела человека породила многообразие вариантов их систематизации. За базу отсчета во всех вариантах принимается продольная ось тела. Однако в дальнейшей детализации отмечаются расхождения как в подходах обозначений, так и в терминологии. Это приводит к неточностям воспроизведения вектора перегрузки, воздействующей в полете или в эксперименте.

Наиболее полная классификация перегрузок по направлению действия предложена Брауном с соавторами в 1966 г. Она представляет трехплоскостную градусную систему координат с отсчетом углов по крену, тангажу и рысканию. Основным недостатком этой системы является сложное нахождение точек отсчета нулевых значений.

В 1971 г. А.В. Иванов и И.А. Цветков данную систему уточнили, предложив за базу отсчета учитывать не градусную сетку окружности, а сферические углы, равные 90° между пересечением всех трех плоскостей - сагитальной, фронтальной и горизонтальной, проходящих через центр тяжести. В случае несовпадения вектора перегрузки с общепринятыми осями X, Y и Z, совпадающими с осями самолета, было предложено применять двойную терминологию. Вектор перегрузки, расположенный выше уровня горизонтальной плоскости, должен определяться направлением голова - таз, а вектор в сферических углах ниже горизонтальной плоскости - направлением таз - голова. В горизонтальной плоскости вектор поперечной перегрузки имеет направления спина - грудь, грудь - спина или бок - бок (Рис. 2).

Рис. 2 Направления перегрузки в трехплоскостной системе координат

В условиях полета, например при аварийной ситуации, перегрузка может быть направлена под любым углом к продольной оси тела человека. Данная система позволяет оценить все возможные положения с указанием угла отклонения от продольной или поперечной осей тела, например, перегрузка в направлении голова - таз под углом 17° справа налево или перегрузка в направлении грудь-спина под углом 15° от головы к ногам. Такое обозначение точно воспроизводит вектор перегрузки. Зная величину перегрузки и рассматривая ее как равнодействующую геометрической суммы продольной и поперечной перегрузок, легко их определить по правилу параллелограмма. Этот метод позволяет оценить наиболее существенные изменения в организме в результате действия наибольшей составляющей, так как пределы переносимости перегрузок в продольном и поперечном направлениях сравнительно хорошо изучены.

По переносимости человеком все перегрузки, учитывая их биомеханическое воздействие, подразделяются на пороговые, оптимальные, допустимые, переносимые, повреждающие и летальные.

В летной практике встречаются различные по величине, продолжительности, скорости нарастания и направлению перегрузки. Кратковременные перегрузки при изменении скорости прямолинейного движения достигают наибольших величин при осложненных взлете или посадке, при прыжках с парашютом и катапультировании. Длительные перегрузки чаще встречаются при изменении направления полета. На скоростных самолетах такие перегрузки могут достигать больших величин, сопровождаясь изменением работоспособности членов экипажа, а, следовательно, и быть причиной нарушения безопасности полетов.

 

ВАРИАНТЫ ЗАРЯДКИ

 

Вариант Подготовительная часть (2-4 мин) Основная часть (24-26 мин) Заключительная часть (8 мин)
Первый (вольные упражнения) Второй (упражнения на снарядах) Третий (преодоление препятствий) Четвертый (ускоренные передвижения) Ходьба, бег, общераз-вивающие упражнения для мышц рук, туловища в движении То же   »     » Общеразвивающие упражнения для мышц рук, туловища и ног, комплексы вольных упражнений, специальные вольные. Бег 1000-1500 м Упражнения на гимнастических снарядах, с тяжестями, опорные прыжки, упражнения на специальных снарядах Преодоление отдельных препятствий, участков полосы и всей полосы по контрольному упражнению. Бег до 1000 м Скоростное пробегание участков местности до 3000 м. Кросс до 3000 м или смешанное передвижение до 4000 м Медленный бег, ходьба с упражнениями в глубоком дыхании и для расслабления мышц То же   »   »

 

Перечисленные упражнения выполняются в медленном и среднем темпе по 5-10 раз. При этом следует обращать внимание на широкую амплитуду движений и выполнение акцентирующего усилия в конце движения. Продолжительность разминки составляет 1-2 мин.

Далее выполняются упражнения в ходьбе. Ходьба делится на обычную, с высоким подниманием коленей, ходьбу с выпадами, с различными движениями рук, корпуса и т. д. Ходьба может проводиться в течение 1-2 мин. Следует обращать внимание на постоянное увеличение темпа ходьбы. Ускоренная ходьба переходит в бег. Упражнения в беге состоят из обычного бега, бега с высоким подниманием коленей и бега прыжками, бега с выбрасыванием прямых ног вперед и назад, бега приставными шагами правым и левым боком вперед, бега спиной вперед и с поворотами на 90, 180, 360°.

Продолжительность бега в начале зарядки может составлять 3-4 мин. Причем в зависимости от условий проведения, поставленных задач время на ходьбу и бег необходимо изменить: при занятиях в помещении сокращать до 2-3 мин, а на открытом воздухе - увеличивать до 4-5 мин. Бег заканчивается ходьбой и упражнениями в движении.

Далее следует выполнять упражнения общеразвивающего характера, которые подбираются по следующему принципу и подобию:

1. Потягивающие упражнения: поднимание прямых рук вперед, вверх с одновременным прогибанием в грудной части тела. Повороты и круговые движения головой.

2. Упражнения преимущественно для мышц рук и плечевого пояса: вращательные движения руками вперед и назад как без предметов, так и с какими-либо тяжестями, гантелями. Сгибание и разгибание рук в упоре лежа. Упражнения выполняются в среднем темпе и повторяются 8-10 раз.

3. Упражнения преимущественно для мышц ног:приседания, опускание в упор присев на правую и левую ногу, попеременные выпады вперед и в стороны, махи ногами вперед и назад, поочередное поднимание согнутых в коленях ног до касания груди. Выполняются преимущественно в среднем темпе по 8-10 раз и более.





Рекомендуемые страницы:


Читайте также:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 621; Нарушение авторского права страницы


lektsia.com 2007 - 2020 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.) Главная | Обратная связь