Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ХОЛОДИЛЬНАЯ ТЕХНИКА И ТЕХНОЛОГИЯ ПРОДУКТОВ ПИТАНИЯСтр 1 из 11Следующая ⇒
ХОЛОДИЛЬНАЯ ТЕХНИКА И ТЕХНОЛОГИЯ ПРОДУКТОВ ПИТАНИЯ ___________________________________________________
ВВЕДЕНИЕ.. 2 1. ФИЗИЧЕСКАЯ СУЩНОСТЬ ИСКУССТВЕННОГО ХОЛОДА.. 3 1.1. Физические процессы получения низких температур. 3 1.2. Способы охлаждения. 5 2. ТЕРМОДИНАМИЧЕСКИЕ ОСНОВЫ ХОЛОДИЛЬНЫХ МАШИН.. 7 2.1. Термодинамический цикл холодильных машин. 7 2.3. Принцип действия паровых компрессионных холодильных машин. 9 2.4. Система охлаждения холодильной установки. 17 2.5. Холодильные агенты и хладоносители. 17 3. ТИПЫ ХОЛОДИЛЬНЫХ МАШИН.. 20 3.1. Газовые и вихревые холодильные машины.. 20 3.2. Компрессионные паровые холодильные машины.. 22 3.3. Абсорбционные и сорбционные холодильные машины.. 22 3.4. Пароэжекторные холодильные машины.. 23 4. КОМПРЕССОРЫ ХОЛОДИЛЬНЫХ МАШИН.. 24 4.1. Поршневые компрессоры.. 24 4.2. Ротационные компрессоры.. 28 4.3. Винтовые компрессоры.. 28 4.4. Турбокомпрессоры.. 29 5. ТЕПЛООБМЕННЫЕ АППАРАТЫ ХОЛОДИЛЬНЫХ МАШИН.. 30 5.1. Конденсаторы.. 30 5.2. Испарители. 31 5.3. Охлаждающие приборы.. 31 6. ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ УСТАНОВОК.. 32 7. ОХЛАЖДАЕМЫЕ СООРУЖЕНИЯ И ХОЛОДИЛЬНОЕ ОБОРУДОВАНИЕ.. 33 7.1. Классификация холодильников для пищевых продуктов. 33 7.2. Охлаждающие среды, их свойства и параметры.. 38 7.3. Приборы измерения и контроля параметров охлаждающих сред и продуктов. 43 7.4. Конструкции холодильников. 46 7.5. Механизация погрузочно-разгрузочных работ. 49 7.6. Тепловой баланс охлаждаемых помещений, 50 7.7. Холодильное технологическое оборудование. 52 7.8. Холодильное торговое оборудование. 57 7.9. Способы и оборудование безмашинного охлаждения. 60
ВВЕДЕНИЕ Природно-климатические условия обусловливают сезонность производства продукции растениеводства и животноводства. Сохранение ее пищевой и биологической ценности в течение длительного периода возможно только с помощью консервирования. Выбор того или иного способа консервирования зависит от свойств продукта, возможностей поддержания его качеств и эффективности затрат на хранение. Холодильное консервирование - эффективный способ обработки и хранения продуктов питания высокого качества. Не менее 40 % производимой в нашей стране сельскохозяйственной продукции подвергается холодильной обработке для предотвращения порчи и сокращения потерь. Воздействие холода по сравнению с другими методами консервирования вызывает минимальные изменения первоначальных свойств продукции. Наиболее распространенный и экономичный способ холодильного консервирования - охлаждение, позволяющее полностью сохранить потребительские свойства. Однако срок хранения охлажденных пищевых продуктов ограничен. Это не позволяет создать достаточные их запасы и обеспечить непрерывное снабжение ими население. Для увеличения продолжительности хранения продукты замораживают, что существенно тормозит скорость протекания процессов, влияющих на их качество. Замораживание и хранение в замороженном виде изменяют начальное качество продуктов, но позволяют сохранить их ценные свойства значительно дольше, чем охлажденных. Характерной особенностью производства продуктов питания является то, что выработанная продукция необходима каждому из нас ежедневно. Перебои в снабжении населения продуктами питания отрицательно сказываются на всех сторонах жизни общества. Четкая работа пищевой промышленности немыслима без создания достаточных запасов сырья и готовой продукции, т.е. без холодильного консервирования. Холодильная техника - это отрасль науки, исследующая и разрабатывающая различные способы получения искусственного холода, а также технические средства получения и применения холода. Холодильная технология продуктов питания - отрасль науки, которая изучает рациональные и научно обоснованные способы использования холода в пищевой промышленности, решает задачи сохранения сырья и продуктов питания с помощью холода и применения его в их производстве. Задачи холодильной технологии как науки следующие: · изучение влияния холодильной обработки и хранения на пищевые продукты и определение оптимальных условий проведения технологических процессов (охлаждение, замораживание, хранение и др.) с учетом особенностей продуктов и свойственных им изменений; · разработка научно обоснованных методов снижения потерь массы продуктов при холодильной обработке и хранении; · совершенствование и создание новых технологий холодильной обработки и хранения совместно с другими методами консервирования, позволяющими минимизировать изменения свойств и потери массы продуктов.
Развитие холодильной техники и холодильной технологии как самостоятельных областей знаний началось с применения холода в пищевых отраслях промышленности и торговле. Искусственный холод для консервирования пищевых продуктов используется немногим более 100 лет. Первый крупный холодильник с машинным охлаждением был сооружен в Бостоне (США) в 1881 г. Первые холодильники в России построены в 1877 г. на рыбных промыслах Мурманского побережья, в 1888 г. - на промыслах в Астрахани, в Махачкале и других городах. Первый промышленный холодильник появился в 1895 г. в Белгороде, вместимость его составляла 250 т. Начало исследованиям и научно-техническим разработкам в области холодильной техники и использования искусственного холода в пищевой технологии положил Ф.С.Касаткин в 1918 г. Были намечены основные направления новой отрасли прикладной науки — холодильной технологии и хранения продуктов питания. Велась систематическая подготовка специалистов высшей квалификации по холодильной технике и холодильной технологии пищевых продуктов. Технологические процессы на холодильниках требуют больших материальных и трудовых затрат, так как термическая обработка и хранение продовольствия связаны с производством и использованием холода, операциями по приему, внутрискладскому перемещению, складированию и выдаче продовольственных грузов. Это определяет межотраслевые связи холодильного хозяйства с холодильным машиностроением, приборостроением, химической промышленностью, другими отраслями. Своеобразие холодильного хозяйства проистекает из разнообразия его звеньев, поскольку наряду с однородными предприятиями (распределительные холодильники) в него входят холодильники предприятий агропромышленного комплекса (мясной, молочной, рыбной, пищевой промышленности и сельского хозяйства) и потребкооперации. В оптовой и розничной торговле с помощью искусственного холода хранится и реализуется значительное количество пищевых продуктов. В то же время холодильное хозяйство - это единый организационно-хозяйственный комплекс, что обусловливается общностью задач всех его звеньев. Холод широко используют не только в отраслях агропромышленного комплекса, на транспорте и в торговле, но и в других отраслях промышленности. Он применяется на предприятиях химической, горной, строительной, нефтеперерабатывающей, металлургической, текстильной, фармацевтической промышленности, машиностроения и др., в медицине, спорте, быту и т.д.
ФИЗИЧЕСКАЯ СУЩНОСТЬ И СПОСОБЫ ПОЛУЧЕНИЯ ИСКУССТВЕННОГО ХОЛОДА
Способы охлаждения Для получения холода используются безмашинные и машинные способы охлаждения. Безмашинные способы охлаждения основываются на плавлении, испарении, сублимации. В безмашинных способах охлаждения используются готовые хладоносители (водный, эвтектический и сухой лед, сжиженные газы, воздух). Установки, работающие на готовых хладоносителях, просты по устройству и, следовательно, наиболее доступны, но они имеют существенные недостатки: полную зависимость от возможности и условий получения хладоносителей; большой объем грузовых работ, связанных с зарядкой хладоносителями и поддержанием гигиены в охлаждаемых помещениях. Недостатки, свойственные безмашинным способам охлаждения, отсутствуют у машинных способов, когда энергия (механическая, тепловая, электрическая) поступает извне. По виду затрачиваемой энергии холодильные машины подразделяются на компрессионные, теплоиспользующие и термоэлектрические. Компрессионные машины используют механическую энергию; теплоиспользующие — тепловую от источников теплоты, температура которых выше окружающей среды; термоэлектрические — электрическую. При охлаждении в компрессионных и теплоиспользующих машинах теплота переносится в результате совершаемого рабочим телом — холодильным агентом (хладагентом) обратного кругового процесса, а в термоэлектрических — при воздействии потока электронов на атомы вещества. Охлаждение в термоэлектрических машинах основано на термоэлектрическом эффекте, известном как эффект Пельтье, заключающемся в том, что при пропускании постоянного электрического тока по замкнутой цепи, состоящей из двух разнородных проводников или полупроводников, один из спаев нагревается (горячий спай), а другой охлаждается (холодный спай). Для того чтобы холодный спай термоэлемента имел постоянную низкую температуру и был источником холода, горячий спай нужно охлаждать. В этом случае система представляет собой холодильный агрегат, в котором электрический ток переносит энергию от холодного спая термоэлемента к горячему. Количество перенесенной энергии пропорционально силе тока в цепи термоэлемента. Изменение полярности электрического тока приводит к перемене мест холодного и горячего спаев. Основной показатель качества термоэлемента — коэффициент добротности (эффективности вещества), определяющий максимальную разность температур горячего и холодного спаев. К достоинствам такого рода устройств можно отнести непосредственное использование электрической энергии для переноса теплоты без промежуточных веществ и механизмов; бесшумность и автономность работы; компактность и простоту автоматизации и обслуживания. Однако они значительно дороже других холодильных машин. В зависимости от вида рабочего тела (холодильного агента) холодильные машины, в основе принципа действия которых лежит обратный цикл Карно (см. подраздел 2.1), подразделяют на паровые и газовые. В испарителе паровой холодильной машины происходит испарение рабочего тела при переходе к нему теплоты от охлаждаемого объекта, а в конденсаторе — его конденсация при переходе теплоты от рабочего тела в окружающую среду (в воздух или воду). В качестве рабочего тела в паровых холодильных машинах используют аммиак и хладоны — фтористые и хлористые производные предельных углеводородов, в газовых — воздух. В зависимости от способа подачи рабочего тела в конденсатор холодильные машины подразделяют на компрессионные, абсорбционные, сорбционные и пароэжекторные. В компрессионных холодильных машинах рабочий цикл совершается за счет механической работы компрессора, в абсорбционных, сорбционных и пароэжекторных — за счет затрат теплоты. Для получения требуемых температур кипения и конденсации рабочего тела используют одноступенчатые, многоступенчатые и каскадные паровые компрессионные машины. Соответственно в одноступенчатых используют один, в многоступенчатых и каскадных — два компрессора и более, которые обеспечивают осуществление холодильного цикла в каждой ступени машины. Для холодильной обработки и хранения пищевых продуктов в охлаждаемых камерах используют преимущественно паровые компрессионные одно- и двухступенчатые холодильные машины.
ТИПЫ ХОЛОДИЛЬНЫХ МАШИН
Поршневые компрессоры Виды поршневых компрессоров. Поршневые компрессоры подразделяют по холодопроизводительности, виду холодильного агента, области применения, устройству кривошипно-шатунного механизма, конструкции корпуса, расположению цилиндров, направлению движения пара в последних, числу степеней сжатия, степени герметичности и некоторым другим признакам. По холодопроизводительности поршневые компрессоры подразделяют на малые (Q0 до 12 кВт), средние (Q0 12—120 кВт) и крупные (Q0 более 120 кВт). По виду холодильного агента различают аммиачные, хладоновые (фреоновые) и универсальные компрессоры. В зависимости от области применения компрессоры подразделяют на стационарные, транспортные и др. По устройству кривошипно-шатунного механизма различают компрессоры крейцкопфные, или ползунковые (двойного действия), и бескрейцкопфные (простого действия). Крейцкопфные компрессоры бывают в основном одноцилиндровые, горизонтальные, сальниковые, непрямоточные (см. рис. 6). Наиболее распространены бескрейцкопфные открытые компрессоры вертикальные и V-образные, прямоточные и непрямоточные (рис. 10). Число цилиндров у бескрейцкопфных компрессоров колеблется от 2 до 16. Двухцилиндровые компрессоры, как правило, вертикальные. Если цилиндров больше, применяют различные пространственные схемы их расположения. Бескрейцкопфные компрессоры разнообразны по конструктивному исполнению. По конструкции корпуса компрессоры подразделяют на блок-картерные (общая отливка блока с картером) и разъемные (блок цилиндров и картер представляют собой отдельные детали). Большое распространение получили блок-картерные компрессоры. В цилиндровую часть блок-картера вставляют сменные цилиндровые гильзы. Блок-картерные компрессоры по сравнению с разъемными отличаются большей жесткостью и прочностью при меньшей толщине стенок цилиндров; их изготовление и ремонт проще. В зависимости от кинематической схемы и расположения оси цилиндров компрессоры делят на прямоточные и непрямоточные; горизонтальные и вертикальные; с угловым расположением цилиндров — V-, W-образные или веерные, крестообразные, звездообразные. В прямоточном компрессоре всасывающие клапаны располагаются на днище поршня, а нагнетательные — в верхней части цилиндра, в ложной крышке. В непрямоточных компрессорах клапаны всасывающие и нагнетательные размещаются в верхней части цилиндра — на клапанной доске. При движении поршня вниз давление в цилиндре компрессора становится ниже, чем во всасывающей полости, и пар проходит через вентиль во всасывающую полость, а затем через всасывающий клапан в полость цилиндра. При движении поршня вверх пар сжимается до давления конденсации и через нагнетательный клапан попадает в нагнетательную полость. По числу степеней сжатия компрессоры бывают одно- и многоступенчатые. По степени герметичности и числу разъемов компрессоры подразделяют: на герметичные — со встроенным электродвигателем в запаянном кожухе без разъемов; бессальниковые — со встроенным электродвигателем, с разъемами и съемными крышками; открытые, или сальниковые, в которых ведущий вал уплотняется при помощи сальника; простого действия, в которых сжатие пара осуществляется одной стороной поршня, и двойного действия, в которых обе стороны поршня рабочие. Герметичные компрессоры — компрессор и электродвигатель заключены в общий герметически закрытый сварной стальной кожух. Электродвигатели устанавливают однофазные и трехфазные асинхронные. Ротор электродвигателя насаживается непосредственно на вал компрессора. Частота вращения вала может быть близка к 50 с-1, что позволяет уменьшить геометрические размеры, габариты и массу компрессора при той же холодопроизводительности. Обмотка электродвигателя охлаждается потоком всасываемого пара холодильного агента, благодаря чему возможно повышение на него нагрузки. Герметичные машины почти бесшумны. Их холодопроизводительность находится в пределах от нескольких сотен ватт до 10 кВт. Герметичные компрессоры изготавливают для трех различных диапазонов температур кипения холодильного агента: С — среднетемпературного от-25 до +10 оС; Н - низкотемпературного от -40 до -25 °С и В — высокотемпературного от -10 до +10 °С. Компрессоры С используют в торговом холодильном оборудовании и бытовых холодильниках. В бытовых холодильниках применяют в основном одноцилиндровые поршневые непрямоточные герметичные компрессоры с вертикальным цилиндром и горизонтальным валом. Электродвигатели в последнее время используют однофазные асинхронные с пусковой обмоткой и короткозамкнутым ротором, скорость вращения которого, а следовательно, и вала компрессора 50 с-1. Рис. 10. Бескрейцкопфный непрямоточный VV-образный одноступенчатый компрессор П220: а - продольный разрез; б — поперечный разрез; 1 — блок-картер; 2 — гильза Цилиндра; 3— поршень с кольцами; 4— шатун; 5— заборный масляный фильтр; 6 - шестеренчатый затопленный насос; 7— шестерни привода масляного насоса; 8 - коленчатый вал с противовесами; 9 — ложная крышка; 10 — всасывающий клапан; 11 — нагнетательный клапан; 12— сальник уплотнения вала Компрессоры Н применяют в низкотемпературном холодильном оборудовании и небольших морозильных устройствах. Компрессоры В используют для кондиционеров, охладителей напитков, соков, молока и других устройств. Бессальниковые компрессоры непрямоточные. Разъемное соединение и съемные крышки обеспечивают доступ к их внутренним частям. Обмотки электродвигателей, как и герметичных компрессоров, охлаждаются всасываемым паром холодильного агента. Отличительная особенность бессальниковых компрессоров – отсутствие сальников, так как электродвигатель находится на одном валу с компрессором и располагается в его картере. Такая конструкция позволяет уменьшить габариты и практически полностью исключить утечку рабочего тела. Холодопроизводительность таких компрессоров находится в пределах от нескольких до нескольких десятков киловатт (средние по величине холодопроизводительности компрессоры). В сальниковых компрессорах самым уязвимым конструктивным узлом является уплотнение коленчатого вала, через которое наиболее вероятна утечка холодильного агента. Особенно велика опасность утечки в малых хладоновых компрессорах. По характеру охлаждения блока цилиндров бывают компрессоры с воздушным и водяным охлаждением. Воздушное охлаждение используется в малых холодильных компрессорах, во всех остальных применяют водяное принудительное охлаждение. Для смазки трущихся деталей используются принудительная, непринудительная или комбинированная системы смазки. По типу привода различают компрессоры с ременной передачей; непосредственно соединенные с электродвигателем муфтой; с электродвигателем, ротор которого насажен на вал компрессора. По частоте вращения коленчатого вала компрессоры разделяют на тихоходные — до 500 об/мин и быстроходные — свыше 500 об/мин. Унифицированные поршневые компрессоры выпускают для хладонов I и II баз, для аммиака и хладонов — III и IV баз, для аммиака — V базы. Герметичные компрессоры I базы имеют горизонтальное и вертикальное расположения двух или четырех цилиндров. Компрессоры герметичные и бессальниковые предназначены для хладонов, сальниковые — для аммиака и хладонов. Хладоновые компрессоры I, II и III баз — непрямоточные, IV — прямоточные; аммиачные III и IV баз — прямоточные; аммиачные компрессоры V базы — крейцкопфные непрямоточные с опозитным расположением двух или четырех цилиндров. Для смазки цилиндров и механизма движения в аммиачных компрессорах используют масла ХА, ХА-30, ХС-40, а в хладоновых - ХФ-12-16, ХФ-22-24, ХФ-22с. При маркировке унифицированных поршневых компрессоров применяют следующие обозначения: П — поршневой, Ф — хладоновый (фреоновый), А — аммиачный, В — вертикальный, V — V-образный, W — веерообразный, Б — бессальниковый, Г — герметичный, О — опозитный. Цифры после букв означают холодопроизводительность (кВт). В сальниковых компрессорах марок П14, П20, П28 и др. расположение цилиндров V-, W-, VV-образное. В бессальниковых компрессорах марок ПБ5, ПБ7 — ПБ220 расположение цилиндров также V-, W-, VV-образное. Основные конструктивные узлы и детали поршневых компрессоров — рама, картер, блок-картер, цилиндры, коленчатые валы, шатуны, поршни, поршневые кольца, клапаны, сальники. Картер представляет собой конструктивную основу машины. Картер вертикальных и V-образных компрессоров имеет вид коробки с боковыми окнами, которые закрываются съемными крышками. Крышку со стороны маховика, через которую проходит коленчатый вал компрессора, называют задней, а противоположную ей — передней. Сверху картера крепится блок цилиндров. Многие конструкции вертикальных компрессоров выполняются блок-картерными. В этом случае цилиндры и картеры отливаются в виде единой детали. Блок-картерные компрессоры компактнее, имеют меньше фланцевых соединений, проще и дешевле в производстве. В каждый цилиндр запрессовывают сменные гильзы, которые в случае износа могут быть заменены новыми. Сменные гильзы уплотняют по верхнему и нижнему поясам резиновыми кольцами. Для охлаждения цилиндров верхнюю часть их боковой поверхности отливают с ребрами (при охлаждении воздухом) или со специальной полостью (при охлаждении водой — водяной рубашкой). Коленчатые валы по конструкции могут быть кривошипными и эксцентриковыми. Их выполняют штампованными, литыми или цельноковаными из высококачественной углеродистой или легированной стали. Опорой коленчатого вала служат подшипники, расположенные в крышках картера или корпусе. Чтобы движение поршня было равномерным, на конец коленчатого вала, выступающий из картера, насаживается маховик — шкив большего диаметра с тяжелым ободом. При непосредственном соединении компрессора с электродвигателем надобность в маховике отпадает, его роль выполняет ротор двигателя. Шатуны передают движение от коленчатого вала к поршням. Они — штампованные стальные двутаврового сечения с разъемной нижней головкой, с вкладышем, залитым баббитом, и неразъемной верхней головкой с бронзовой втулкой. Нижние головки шатунов, которые охватывают шейки коленчатого вала, стягиваются стальными болтами с зашплинтованными корончатыми гайками. Верхние головки пальцами поршня закрепляются в поршне. Поршни по конструкции делят на дисковые и тронковые. Дисковые используют в крупных крейцкопфных компрессорах двойного Действия, когда по обе стороны поршня расположены рабочие объемы цилиндра. Тронковые поршни могут быть двух типов: проходные для прямоточных машин, непроходные для непрямоточных. Конструкция проходных поршней позволяет увеличить проходные сечения всасывающего и нагнетательного клапанов. Непроходные поршни отличаются простотой конструкции и небольшой массой. Их используют в малых и средних непрямоточных компрессорах. Поршни для герметичных компрессоров делают без поршневых колец. Вместо них на боковой поверхности протачивают неглубокие канавки для сбора и равномерного распределения масла по зеркалу цилиндра. Всасывающие и нагнетательные клапаны выполняют в компрессоре распределительную функцию. Через всасывающие клапаны происходит засасывание паров холодильного агента из всасывающего трубопровода в цилиндр компрессора, а через нагнетательные — выталкивание сжатых паров в нагнетательный трубопровод. В поршневых холодильных компрессорах клапаны самодействующие, т.е. они открываются и закрываются под действием разности давлений по обе их стороны. На всасывающие клапаны прямоточных компрессоров, расположенные в днище поршня, помимо давления газа действуют силы инерции. В вертикальном прямоточном компрессоре при движении поршня вверх и достижении им верхней мертвой точки клапанная пластина по инерции стремится продолжить движение вверх, и клапан открывается, в то время как поршень после остановки начинает двигаться вниз. Когда же поршень останавливается в нижней мертвой точке, клапанная пластина по инерции стремится продолжить движение вниз, прижимается к седлу клапана, и он закрывается. В бескрейцкопфных компрессорах применяют пластинчатые клапаны, получившие свое название потому, что их рабочей запорной деталью служат тонкие (0, 8— 1, 5 мм) стальные пластины. Пластинчатые клапаны в зависимости от конфигурации и крепления клапанных пластин бывают кольцевыми, полосовыми, язычковыми. Кольцевые клапаны применяют в средних и крупных компрессорах. В конструкциях клапанов, закрепленных на поршнях, используют беспружинные кольцевые и полосовые клапаны. Полосовые клапаны называют еще ленточными, поскольку в них отверстия для прохода пара перекрываются упругими пластинами, имеющими форму лент. Предохранительные клапаны предотвращают аварии при чрезмерном повышении давления нагнетания. При превышении предельной разности давлений нагнетания и всасывания (Δ P = 1, 68 МПа) предохранительные клапаны перепускают сжатый пар из полости нагнетания в полость всасывания. Применяют в основном пружинные самодействующие предохранительные клапаны. Когда разность давлений превышает допустимую, пружина сжимается, клапан открывается и нагнетательная сторона компрессора соединяется с всасывающей. Сальниками называют специальные устройства для уплотнения подвижных деталей, например валов, штоков, плунжеров, в целях предотвращения утечки жидкостей, пара или газа. Применяют сальники с кольцами трения. Сальники открытых хладоновых компрессоров бывают сильфонного и мембранного типов. Ротационные компрессоры Ротационные компрессоры более уравновешены, чем поршневые, поскольку у них нет кривошипно-шатунного механизма, совершающего возвратно-поступательное движение. Кроме того, они не имеют всасывающих клапанов и могут работать при больших частотах вращения вала. Габариты ротационных компрессоров невелики. Изготавливают их с катящимися, качающимися и вращающимися роторами, последние (пластинчатые компрессоры) — с двумя, четырьмя и более пластинами, с круглым или эллиптическим цилиндром. Вал ротационных компрессоров расположен эксцентрично по отношению к цилиндру. На вал насажен ротор (поршень) с фрезерованными по всей длине пазами, в которые вставлены асботекстолитовые пластины. При вращении ротора пластины под действием центробежной силы выходят из пазов и прижимаются к поверхности цилиндра, образуя замкнутые полости. Пар из всасывающего трубопровода захватывается пластинами, отсекается в верхней части цилиндра вращающимся ротором и сжимается. При дальнейшем вращении полость со сжатым паром соединяется с нагнетательным трубопроводом и пар выталкивается. Ротационные компрессоры используют в основном в установках большой холодопроизводительности в качестве ступеней низкого давления в агрегатах двухступенчатого сжатия. Но выпускают и герметичные компрессоры небольшой холодопроизводительности. Ротационный герметичный компрессор с катящимся ротором состоит из неподвижного цилиндра и поршня-ротора, вращающегося на эксцентриковой шейке вала. К ротору при помощи пружины прижимается лопасть, разделяющая рабочий объем цилиндра на две части: в одной протекает процесс всасывания, в другой — сжатия и нагнетания. При работе компрессора пары хладона поступают через всасывающий патрубок в кожух, омывают электродвигатель и охлаждают его, затем через всасывающую трубку всасываются компрессором. Сжатые пары холодильного агента через нагнетательный клапан выталкиваются из цилиндра в глушитель, а из него по трубопроводу подводятся к нагнетательному штуцеру. Холодопроизводительность таких компрессоров от 255 до 640 Вт. Винтовые компрессоры Основу винтовых компрессоров составляют два ротора (оба с зубчато-винтовыми лопастями): ведущий и ведомый, расположенные в корпусе (рис. 11). Рис. 11. Роторы винтового компрессора: 1 — ведущий ротор с четырьмя зубьями; 2 — ведомый ротор с шестью впадинами; 3 — синхронизирующие шестерни Винтовые впадины роторов, проходя мимо всасывающего окна, заполняются газообразным холодильным агентом. При дальнейшем вращении роторов газ сжимается, так как зубья одного ротора входят во впадины другого и при этом уменьшается объем, занимаемый газом. К концу сжатия впадины со сжатым газом объединяются с нагнетательным окном. Винтовое расположение на роторах нескольких впадин обеспечивает непрерывность подачи газа компрессором. Применяют большей частью маслозаполненные винтовые компрессоры, в рабочее пространство которых подается масло. Это повышает производительность компрессора вследствие уменьшения внутренних перетечек холодильного агента через зазоры между корпусом и роторами и между самими роторами, а также снижения температуры нагнетания холодильного агента. После прохождения компрессора хладагент направляется в маслоотделитель, в котором отделяется до 95 % масла. Шестеренчатым насосом масло направляется в маслоохладитель, через фильтры снова подается в рабочее пространство компрессора и на смазку подшипников. Винтовые компрессоры надежны в эксплуатации, их холодопроизводительность можно плавно регулировать с помощью золотникового устройства, изменяющего активную длину винтов, у них отсутствует трение в полости сжатия. Они имеют небольшие габариты и массу по сравнению с поршневыми и даже ротационными компрессорами. Винтовые компрессоры характеризуются очень низким пределом давления всасывания (5 — 2 кПа), что позволяет широко использовать их в низкотемпературных установках. Частота вращения ведущего ротора у них составляет 50 с-1. Целесообразно применение аммиачных винтовых компрессоров холодопроизводительно-стью 350—1745 кВт. При более низкой производительности они утрачивают преимущества перед поршневыми по массе и габаритным размерам из-за громоздкости маслосистемы. Турбокомпрессоры Турбокомпрессоры редко используют в пищевой промышленности из-за большой холодопроизводительности и широкого применения аммиака в качестве холодильного агента. По сравнению с поршневыми они обладают рядом преимуществ: отсутствие клапанов, динамическая уравновешенность, высокооборотность и малые габариты. Турбокомпрессоры обычно имеют несколько колес, поэтому являются многоступенчатыми машинами. По принципу работы они подразделяются на осевые и центробежные. Осевые компрессоры применяют для очень большой холодопроизводительности, центробежные — для холодопроизводительности от 500 до нескольких тысяч киловатт. На валу центробежного компрессора вращаются рабочие колеса с лопатками, передающие кинетическую энергию холодильному агенту, который выбрасывается из колеса в диффузор, где его кинетическая энергия преобразуется в энергию давления. Диффузор выполняется безлопаточным, лопаточным и прямолинейным. Движение пара на рабочем колесе складывается из вращения его вместе с колесом (абсолютное движение) и перемещения вдоль лопаток (относительное движение), что в сумме определяет абсолютную скорость движения пара, а следовательно, его кинетическую энергию. Работа, затрачиваемая на сжатие пара, уменьшается по мере приближения процесса сжатия к изотермическому, поэтому после группы колес применяется промежуточное охлаждение пара в холодильниках.
Конденсаторы Различают следующие типы конденсаторов: кожухотрубные горизонтальные, кожухотрубные вертикальные, кожухозмеевиковые, испарительные и воздушные. Кожухотрубные горизонтальные конденсаторы используют в аммиачных и хладоновых холодильных установках пищевых предприятий. Они имеют цилиндрический стальной кожух, в котором Прямые трубы (стальные или медные) расположены горизонтально, концы их развальцованы в трубных решетках. Охлаждающая вода под напором проходит по этим трубам. На конденсаторе устанавливают предохранительный клапан, указатель уровня холодильного агента, вентиль для выпуска воздуха из межтрубного пространства. Пары хладагента конденсируются в межтрубном пространстве на наружной поверхности труб. Такие конденсаторы обычно работают в комплекте с водоохлаждающими устройствами. Кожухотрубные вертикальные конденсаторы используют в крупных аммиачных холодильных установках. Главный их недостаток — сложность равномерного распределения воды по трубам. Кожухозмеевиковые конденсаторы отличаются от кожухотрубных горизонтальных отсутствием второй трубной решетки, кожух конденсатора выполнен в виде горизонтально расположенного стакана, внутри которого водяные трубки соединены попарно. Испарительные конденсаторы применяют на пищевых предприятиях. В них теплота от холодильного агента передается через стенку трубы воде, стекающей тонкой пленкой по наружной поверхности труб, и далее воздуху посредством испарения части воды. Конденсатор представляет собой закрытый корпус. Под конденсатором располагается водяной бак, куда вода сливается самотеком. Из водяного бака циркулирующая вода снова нагнетается насосом в водяной коллектор (оросительную систему). Сверху вентилятором подается поток воздуха, который усиливает испарение воды и служит приемником теплоты водяного пара. Использование этого типа конденсаторов эффективно в районах с сухим и жарким климатом. Воздушные конденсаторы широко используют в агрегатах, обслуживающих торговое оборудование, бытовых холодильниках, изотермическом транспорте. Применение их позволяет уменьшить расход воды, сократить затраты на сооружение устройств для охлаждения оборотной воды. Воздушные конденсаторы представляют собой систему трубчатых змеевиков, расположенных в металлическом корпусе. Холодильный агент проходит внутри змеевиков, с наружных оребренных поверхностей которых осуществляется съем теплоты естественной или принудительной конвекцией движения воздуха. Ребра труб змеевиков пластинчатые, но иногда для устранения контактного сопротивления теплопередачи между трубой и ребрами эти конденсаторы изготавливают с литыми ребрами. Испарители Испарители — теплообменные аппараты, предназначенные для охлаждения промежуточного хладоносителя путем теплообмена с кипящим холодильным агентом. По конструкции кожухотрубный и кожухозмеевиковый испарители подобны горизонтальному кожухотрубному и кожухозмеевиковому конденсаторам. Хладоноситель циркулирует в трубах, а в межтрубном пространстве испарителя кипит холодильный агент. Испарители изготавливают с закрытой и открытой циркуляцией охлаждаемой жидкости. Испарители с закрытой циркуляцией выполняются кожухотрубными. Охлаждаемая жидкость протекает в них под напором, который создает насос. В испарителях с открытой циркуляцией трубы, по которым протекает кипящий холодильный агент, погружаются в охлаждаемую жидкость, наливаемую в баки. Испарители с открытой циркуляцией — панельные. В них жидкость перемешивается мешалкой. Панельный испаритель выполнен в виде прямоугольного бака, в который помещаются испарительные секции панельного типа. Панельные испарители поставляются в комплекте с отделителями жидкости. При применении в качестве хладоносителя ледяной воды панельные испарители можно использовать как испарители-аккумуляторы для сглаживания неравномерности тепловой нагрузки на молочных предприятиях. Охлаждающие приборы Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 1790; Нарушение авторского права страницы