Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Центральное и местное теплоснабжение. Преимущества и недостатки централизованного теплоснабжения по сравнению с местным. Теплофикация и ее преимущества.Стр 1 из 4Следующая ⇒
Центральное и местное теплоснабжение. Преимущества и недостатки централизованного теплоснабжения по сравнению с местным. Теплофикация и ее преимущества. Местное теплоснабжение: Централизованное теплоснабжение: Выработка Q Транспортировка Q Потребление Q Существует два вида выработки тепла и электрической энергии: комбинированный метод и раздельный метод. При комбинированном методе (теплофикация) Q вырабатывается на ТЭЦ. При раздельном Q вырабатывается на районной котельной, а электричество на КЭС (конденсационной электростанции). Принципиальная схема ТЭЦ Цикл Ренкина 1-2 – сжатие воды в насосе, 2-3 – нагрев воды, 3-4 – подвод тепла к перегретому пару, 4-5 – подогрев тепла в пароперегревателе, 5-6 – отвод высокопотенциальной энергии на выработку эл. энергии, забираем тепло в ПТ. к-котел, пп-пароперегрев, т-турбина, г-электрогенератор, пт-промежуточный теплообменник, потребитель Принципиальная схема районной котельной Принципиальная схема КЭС Основные преимущества теплофикации (централизованные): 1.Высокий КПД, 2.Возможно сжигание низкосортных топлив, 3.Укрупненный источник тепла позволяет сократить количество обслуживающего персонала и одновременно увеличить качество теплоснабжения, 4.Освобождение территории от дополнительных застроек, 5.Улучшение качества воздушного бассейна. Недостаток (централизованные): Транспортировка тепла от укрупненных источников требует большой и разветвленной системы тепловых сетей, поэтому появилась тенденция децентрализации систем теплоснабжения. 2. Способы подключения СГВ к ТС по закрытой схеме. 1) Параллельная: Гкал/ч
1-летняя перемычка При ll схеме ввода происходит одно ступенчатый нагрев водопроводной воды в подогревателе горячего водоснабжения, который включен ll по ходу греющей сетевой воды с теплообменником отопления.
2) Двустутенчатая смешанная схема
Из В1 подается и нагревается обраткой и подаётся в I ступень подогрева с температурой tI = τ 2’-5 (затем теплоноситель подаётся во вторую ступень). При смешанной схеме ввода проходит двухступенчатый нагрев водопроводной воды в подогревателях I, II ступени с утилизацией тепла обратной воды теплообменника отопления. В подогревателе II ступени греющей водой является часть поступающей на ввод часть сетевой воды, а в подогреватель I ступени- смесь вод, покидающих теплообменник отопления и подогреватель второй ступени. Смешанная схема – подогреватель II ступени соединён по сетевой воде ll с теплообменником отопления, а подогреватель I ступени соединен последовательно.
3) Последовательная схема:
Последовательная потому что в данном случае подогреватель горячего водоснабжения I, II ступени соединены по сетевой воде последовательно с теплообменником отопления. При ней также как и при смешанной, происходит утилизация тепла обратной воды теплообменника отопления для подогревателя водопроводной воды, и рециркуляционная вода СГВ соединяется с водопроводной водой м/д подогревателями.
4) Предвключенная и послевключенная: Характеристики систем: +: - изолированность водопроводной воды от воды в тепловой сети, предполагает качество горячей воды. - прост контроль герметичности системы (по подпитке) - прост санитарный контроль системы –: -сложность оборудования и экспл. теплового пункта -выделение накипи в водоподогревателе при использовании воды имеющую высокую карбонатную жесткость. Требования к режиму давления в водяных тепловых сетях. Построение пьезометрических графиков водяных тепловых сетей. Статический режим и динамический режимы водяной системы теплоснабжения. При проектировании и эксплуатации разветвлённых сетей для учёта взаимного влияния профиля трассы, высоты абонентских сетей и потерь давления в тепловых сетях используют пьезометрический график. По нему можно определить давление и потери давления в любой точке сети, подобрать оборудование и решить некоторые технико-экономические задачи. 1.Вычерчивается разветвлённый план трассы; 2.Строится профиль трассы; 3.Наносим высоты абонентов(за ноль принимаем отметку сетевых насосов на источнике тепла); 4.Разробатываем динамический режим в соответствии с требованиями, предъявляемыми к давлению в тепловых сетях. 5.Откладываем потери давления (подающей и обратной магистрали) в соответствии с данными гидравлического расчёта. Потери на абоненте: элеваторное присоединение=15м, через водоподогреватель=20м. Из точки DHподпора откладываем DHобр , затем DHаб , потом DHпод и DHист , DHист =0, 25*(DHобр + DHаб + DHпод) DHподпора – напор с которого включаются в работу сетевые насосы (=высота абонента+3 или 5м) Требования к режиму давления: 1.напор в обратном ТП: Нобр ≤ Нобрмакс.доп - для чугунных радиаторов=60м; -конвекторы=80м, независимое присоединение=100м. Нобр ≥ Нобрмин.доп (=5м-определяется конструкцией насоса) 2.напор в подающем ТП: Нпол ≤ Нподмакс.доп определяется прочностью сварного шва труб=160м (для труб в пределах теплового пункта=220-240м)4) Нпод ≤ Нподмин.доп регламентирует не вскипание воды в тепловых сетях=20м(T1=130°С), =30м(T1=140°С), =40м(T1=150°С). DHсет =DHист + DHобр + DHаб + DHпод В водяной системе теплоснабжения различают два режима: динамический и статический. В динамическом режиме имеет место циркуляция воды и напор в подающем и обратном т/д не равны Нпод ≠ Нобр В статическом режиме циркуляция отсутствует Нпод = Нобр. Эти режимы не совпадают во времени и решают разные задачи. Динамический режим обеспечивает нормальную работу всех элементов системы. Статический режим обеспечивает заполнение всех элементов системы водой и готовность к переходу на динамический режим. Статический режим рассматривается при температуре воды до 1000С. Период с температурой воды выше 1000С не продолжителен и должен прорабатываться в динамическом режиме без прекращения циркуляции. Для гарантированного заполнения всех элементов системы линия статического давления должна проходить на 5 м выше самой высокой точки системы. При этом у потребителей напор должен быть не более max допустимого.
Если одной линией статического напора невозможно обеспечить нормальные условия статического режима, то система в статическом режиме разбивается на зоны.
Задачи и основные расчетные зависимости теплового расчета тепловой сети. Тепловой расчет надземного теплопровода. Тепловой расчет подземной бесканальной 1-трубной прокладки т/с. Тепловой расчет 2-трубной подземной канальной прокладки т/с. В задачу теплового расчета входит решение следующих: 1.Определение тепловых потерь теплопровода. 2.Расчет температурного поля вокруг трубопровода, т.е. определение t поверхности изоляции, определение t воздуха в канале, определение t стенок канала, определение t грунта вокруг теплопровода.. 3.Определение падения t теплоносителя вдоль трубопровода.. 4.Выбор толщины тепловой изоляции. Количество теплоты, проходящей в единицу времени через цепь последовательно соединенных термических сопротивлений:
-термическое сопротивление от теплоносителя к внутренней поверхности, - термическое сопротивление стенки трубы, - термическое сопротивление изоляции, - термическое сопротивление поверхности. В тепловом расчете встречается 2 вида термического сопротивления: термическое сопротивление поверхности , и термическое сопротивление слоя . 1.Термическое сопротивление поверхности определяется , -поверхность трубопровода длиной 1м, -коэффициент теплопередачи на поверхности Вт/м2 ОС, , при естественной конвекции: , при вынужденной конвекции: Для приближенного значения можно посчитать приближенно , =8, 15-30 Вт/м2 ОС, очень высоки (десятки тысяч) в инженерных расчетах пренебрегают. 2. Термическое сопротивление слоя , d2, d1-наружный и внутренний диаметр слоя , , -пренебрегают Классификация способов прокладки тепловых сетей. Подземная прокладка тепловых сетей. Общие положения по прокладке. Подземная прокладка тепловой сети. Общие положения. В городах и сельских населенных пунктах для тепловых сетей, как правило, предусматривают подземную прокладку, так как она не мешает движения транспорта, не портит архитектурный ансамбль города и снижает теплопотери трубопроводов за счет использования теплоизоляционных свойств грунта. Промерзание грунтов не опасно для трубопроводов, поэтому их можно прокладывать в зоне сезонного промерзания грунтов на глубине 0, 5-2м от поверхности земли. Всегда стараются прокладывать трубопроводы выше уровня грунтовых вод. Если это по каким-либо причинам невозможно, то трубопроводы прокладывают с попутным дренажом, и обязательно предусматривается усиленная обмазочная битумная изоляция. Трасса трубопровода тепловой сети располагается в технических полосах параллельно красным линиям улиц, как правило, в непроезжей части в линии зеленых насаждений. Канальная прокладка тепловой сети. Каналы для трубопроводов тепловой сети бывают непроходные, полупроходные, проходные каналы под тоннели и коллекторы. Конструкции каналов полностью разгружают трубопровод от механических воздействий грунта и временных транспортных нагрузок, а также ограждают трубопровод и тепловую изоляцию от коррозионного влияния почвы. Прокладка в каналах обеспечивает свободное перемещение при температурных деформациях, причем, как осевое, так и боковое. Непроходные и полупроходные каналы. Сводчатый канал d 50-500мм 1-сборные полуцилиндрические своды, 2-ж/б плита днища, «+»более экономичны по расходу материала, более эффективны по отводу конденсата с поверхности., «-»изготовление таких форм требует более сложных технологий, легко повреждаются при транспортировке. В настоящее время наиболее удачной является конструкция канала типа МКЛ d 50-1400мм
1-ж/б рамная секция(лоток), 2-ж/б плита днища, 3-опорная подушка скользящей опоры, 4-песчанная подсыпка, 5-бетонная подготовка, 6-гидроизоляция. Ширина Б и высота Н дают возможность для прохода в канале, для того, чтобы использовать эти каналы как полупроходные необходимо увеличить Б на 200-300мм МКЛ-8, 10, 12. МКЛ-4, 6 – при небольшой модернизации также переводятся в полупроходные.Наиболее распространенные конструкции непроходных каналов Кл, Клп, Клс
Кл
Клс
Клп Проходные каналы тоннели и коллекторы. Теплопроводы, проложенные в проходных каналах находятся в наиболее благоприятных условиях, но однако вследствие больших начальных капитальных затрат применение их ограничено. В коллекторах вместе с теплопроводами прокладывают электросиловые и телефонные кабели, водопровод и канализация.. 1-блок перекрытия, 2-Г-образные блоки схем, 3-плита днища, 4-стыки блоки днища (приварные петли)
Бесканальная прокладка т/с Оказывается дорогостоящие канальные конструкции, надежно защищающие трубопровод от внешних воздействий оказались неспособными защитить трубопровод от увлажнения и внешней коррозии. В20-30гг была попытка реализовать бесканальную прокладку, но гидрофобная изоляция увлажнение и малая прочность сварного шва при механическом воздействии. В настоящее время этих недостатков удалось избежать и в достаточной мере реализовывать бесканальную прокладку. Применяется для трубопроводов dдо 400мм. Условно бесканальную прокладку можно разделить на 3 группы: 1. монолитная бесканальная прокладка, 2.засыпная бесканальная прокладка, 3. литая бесканальная прокладка. Литые Надземная прокладка Применяют на территории промышленных предприятий, на площадках свободных от застроек, в не пределах города или в местах, где она не влияет на архитектурный ансамбль и не мешает движению транспорта, «+» доступность для осмотра и удобство эксплуатации, возможность быстро обнаружить и устранить аварию, отсутствии электрокоррозии от блуждающих токов и от агрессивных грунтовых вод, малая стоимость сооружения. Надземную прокладку осуществляют на отдельно стоящих опорах, эстакадах, по стенам зданий. На отдельно стоящих опорах Центральное и местное теплоснабжение. Преимущества и недостатки централизованного теплоснабжения по сравнению с местным. Теплофикация и ее преимущества. Местное теплоснабжение: Централизованное теплоснабжение: Выработка Q Транспортировка Q Потребление Q Существует два вида выработки тепла и электрической энергии: комбинированный метод и раздельный метод. При комбинированном методе (теплофикация) Q вырабатывается на ТЭЦ. При раздельном Q вырабатывается на районной котельной, а электричество на КЭС (конденсационной электростанции). Принципиальная схема ТЭЦ Цикл Ренкина 1-2 – сжатие воды в насосе, 2-3 – нагрев воды, 3-4 – подвод тепла к перегретому пару, 4-5 – подогрев тепла в пароперегревателе, 5-6 – отвод высокопотенциальной энергии на выработку эл. энергии, забираем тепло в ПТ. к-котел, пп-пароперегрев, т-турбина, г-электрогенератор, пт-промежуточный теплообменник, потребитель Принципиальная схема районной котельной Принципиальная схема КЭС Основные преимущества теплофикации (централизованные): 1.Высокий КПД, 2.Возможно сжигание низкосортных топлив, 3.Укрупненный источник тепла позволяет сократить количество обслуживающего персонала и одновременно увеличить качество теплоснабжения, 4.Освобождение территории от дополнительных застроек, 5.Улучшение качества воздушного бассейна. Недостаток (централизованные): Транспортировка тепла от укрупненных источников требует большой и разветвленной системы тепловых сетей, поэтому появилась тенденция децентрализации систем теплоснабжения. 2. Способы подключения СГВ к ТС по закрытой схеме. 1) Параллельная: Гкал/ч
1-летняя перемычка При ll схеме ввода происходит одно ступенчатый нагрев водопроводной воды в подогревателе горячего водоснабжения, который включен ll по ходу греющей сетевой воды с теплообменником отопления.
2) Двустутенчатая смешанная схема
Из В1 подается и нагревается обраткой и подаётся в I ступень подогрева с температурой tI = τ 2’-5 (затем теплоноситель подаётся во вторую ступень). При смешанной схеме ввода проходит двухступенчатый нагрев водопроводной воды в подогревателях I, II ступени с утилизацией тепла обратной воды теплообменника отопления. В подогревателе II ступени греющей водой является часть поступающей на ввод часть сетевой воды, а в подогреватель I ступени- смесь вод, покидающих теплообменник отопления и подогреватель второй ступени. Смешанная схема – подогреватель II ступени соединён по сетевой воде ll с теплообменником отопления, а подогреватель I ступени соединен последовательно.
3) Последовательная схема:
Последовательная потому что в данном случае подогреватель горячего водоснабжения I, II ступени соединены по сетевой воде последовательно с теплообменником отопления. При ней также как и при смешанной, происходит утилизация тепла обратной воды теплообменника отопления для подогревателя водопроводной воды, и рециркуляционная вода СГВ соединяется с водопроводной водой м/д подогревателями.
4) Предвключенная и послевключенная: Характеристики систем: +: - изолированность водопроводной воды от воды в тепловой сети, предполагает качество горячей воды. - прост контроль герметичности системы (по подпитке) - прост санитарный контроль системы –: -сложность оборудования и экспл. теплового пункта -выделение накипи в водоподогревателе при использовании воды имеющую высокую карбонатную жесткость. Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 3031; Нарушение авторского права страницы