Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Аморфный компонент межклеточного вещества



Клетки и волокна соединительной ткани заключены в аморфный компонент, или основное вещество (substantia fundamentalis). Эта гелеобразная субстанция представляет собой метаболическую, интегративно-буферную многокомпонентную среду, которая окружает клеточные и волокнистые структуры соединительной ткани, нервные и сосудистые элементы. В состав компонентов основного вещества входят белки плазмы крови, вода, неорганические ионы, продукты метаболизма паренхиматозных клеток, а также растворимые предшественники коллагена и эластина, протеогликаны, гликопротеины и комплексы, образованные ими. Все эти вещества находятся в постоянном движении и обновлении.

Гликозаминогликаны (ГАГ, ранее - " кислые мукополисахариды" ) — полисахаридные соединения, - линейные полимеры, построенные из повторяющихся дисахаридных единиц. Каждая из этих единиц содержит обычно гексуроновую кислоту и гексозамин (аминосахарид). Молекулы ГАГ содержат много гидроксильных, карбоксильных и сульфатных групп, имеющих отрицательный заряд, легко присоединяют молекулы воды и ионы, в частности Na+, и поэтому определяют гидрофильные свойства ткани. ГАГ проницаемы для кислорода и СО2, но предохраняют органы от проникновения чужеродных тел и белков. Гликозаминогликаны участвуют в формировании волокнистых структур соединительной ткани и их механических свойствах, репаративных процессах соединительной ткани, в регуляции роста и дифференцировке клеток. Среди гликозаминогликанов наиболее распространена в соединительной ткани гиалуроновая кислота, а также сульфатированные ГАГ: хондроитин-сульфаты (в хряще, коже, роговице), дерматансульфат (в коже, сухожилиях, в стенке кровеносных сосудов), кератансульфат, гепаринсульфат (в составе многих базальных мембран). Гепарин — гликозаминогликан, состоящий из глюкуроновой кислоты и гликозамина. В организме человека и животных он вырабатывается тучными клетками, является естественным противосвертывающим фактором крови.

Соединения белков с ГАГ носят название протеогликаны (ПГ). В соединительных тканях протеогликаны образуют сложные протеогликановые комплексы, определяющие во многом свойства всего межклеточного вещества.

В основе протеогликанового комплекса лежит длинная (около 1700 нм) линейная молекула гиалуроновой кислоты, к которой присоединяются 70-100 молекул протеогликанов.

Полианионная природа ПГ позволяет им обеспечивать транспорт воды, солей, аминокислот. Пространственная организация ПГ-комплексов образует своеобразное молекулярное сито, регулирующее диффузию воды и низкомолекулярных продуктов питания и обмена. Нарушение пористости этого " фильтра", например, при возрастном отношении гиалуроновой кислоты и хондроитинсульфатов в стенках сосудов является одной из предпосылок к развитию атеросклероза.

Гликопротеины (ГП, " неколлагеновые белки" ) — класс соединений белков с олигосахаридами (гексозаминами, гексозами, фукозами, сиаловыми кислотами). Гликопротеины входят в состав как волокон, так и аморфного вещества. К ним относятся:

• растворимые ГП, связанные с протеогликанами;

• ГП кальцинированных тканей;

• ГП, связанные с коллагеном (структурные ГП и ГП базальных мембран).

Гликопротеины играют большую роль в формировании структуры межклеточного вещества соединительной ткани и также определяют его функциональные особенности (примеры ГП: фибронектин, хондронектин, фибриллин, ламинин и др.).

Фибронектин — главный поверхностный гликопротеин фибробласта. В межклеточном пространстве он связан главным образом с интерстициальным коллагеном. Полагают, что фибронектин обусловливает липкость, подвижность, рост и специализацию клеток.

Фибриллин формирует микрофибриллы, усиливает связь между внеклеточными компонентами.

Ламинин — компонент базальной мембраны, состоящий из трех полипептидных цепочек, связанных: между собой дисульфидными соединениями, а также с коллагеном V типа и поверхностными рецепторами клеток.

Волокнистая соединительная ткань

Коллагеновые волокна

Коллагеновые структуры, входящие в состав соединительных тканей организмов человека и животных, являются наиболее представительными ее компонентами, образующими сложную организационную иерархию. Основу всей группы коллагеновых структур составляет волокнистый белок — коллаген, который определяет свойства коллагеновых структр.

Коллаген составляет более 30% общей массы белков тела, причем около 40% его находится в коже, около 50% - в тканях скелета и 10% - в строме внутренних органов.

Коллагеновые волокна в составе разных видов соединительной ткани определяют их прочность. В рыхлой волокнистой соединительной ткани они располагаются в различных направлениях в виде волнообразно изогнутых, спиралевидно скрученных, округлых или уплощенных в сечении тяжей толщиной 1—3 мкм и более. Длина их различна.

Внутренняя структура коллагенового волокна определяется фибриллярным белком — коллагеном, который синтезируется на рибосомах гранулярной эндоплазматической сети фибробластов.

Различают более 20 типов коллагена, отличающихся молекулярной организацией, органной и тканевой принадлежностью. Например:

· коллаген I типа встречается главным образом в соединительной ткани кожи, сухожилиях, костях, роговице глаза, склере, стенке артерий и др.;

· коллаген II типа входит в состав гиалиновых и фиброзных хрящей, стекловидного тела и роговицы глаза;

· коллаген III типа находится в дерме кожи плода, в стенках крупных кровеносных сосудов, а также в ретикулярных волокнах (например, органов кроветворения);

· коллаген IV типа — встречается в базальных мембранах, капсуле хрусталика (в отличие от других типов коллагена он содержит гораздо больше боковых углеводных цепей, а также гидрооксилизина и гидрооксипролина);

· V тип коллагена присутствует в хорионе, амнионе, эндомизии, перимизии, коже, а также вокруг клеток (фибробластов, эндотелиальных, гладкомышечных), синтезирующих коллаген.

Коллаген IV и V типа не образует выраженных фибрилл.

В аминокислотном составе белка коллагена преобладает глицин (33% - каждая третья аминокислота), а также пролин и гидроксипролин.

Молекулы коллагена имеют длину около 280 нм и ширину 1, 4 нм. Они построены из триплетов - трех полипептидных α -цепочек предшественника коллагена — проколлагена, свивающихся еще в клетке в единую тройную спираль. Проколлаген секретируется в межклеточное вещество. Проколлаген формирует первый, молекулярный, уровень организации коллагенового волокна.

Второй, надмолекулярный, уровень — внеклеточной организации коллагенового волокна — представляет агрегированные в длину и поперечно связанные с помощью водородных связей молекулы тропоколлагена, образующиеся путем отщепления концевых пептидов проколлагена. Сначала образуются протофибриллы, а 5—6 протофибрилл, скрепленных между собой боковыми связями, составляют микрофибриллы толщиной около 5 нм.

При участии гликозаминогликанов, также секретируемых фибробластами, формируется третий, фибриллярный, уровень организации коллагенового волокна. Коллагеновые фибриллы представляют собой поперечно исчерченные структуры толщиной в среднем 20—100 нм. Период повторяемости темных и светлых участков 64—67 нм. Каждая молекула коллагена в параллельных рядах, как полагают, смещена относительно соседней цепи на четверть длины, что служит причиной чередования темных и светлых полос. В темных полосах под электронным микроскопом видны вторичные тонкие поперечные линии, обусловленные расположением полярных аминокислот в молекулах коллагена.

Четвертый, волоконный, уровень организации - коллагеновое волокно, образующееся путем агрегации фибрилл, имеет толщину 1 — 10 мкм (в зависимости от топографии). В него входит различное количество фибрилл — от единичных до нескольких десятков. Волокна могут складываться в пучки (волокон) толщиной до 150 мкм.

Коллагеновые волокна отличаются малой растяжимостью и большой прочностью на разрыв. В воде толщина сухожилия в результате набухания увеличивается на 50%, а в разбавленных кислотах и щелочах — в 10 раз, но при этом волокно укорачивается на 30%. Способность к набуханию больше выражена у молодых волокон. При термической обработке в воде коллагеновые волокна образуют клейкое вещество (греч. kolla — клей), что и дало название этим волокнам.

Разновидностью коллагеновых волокон являются ретикулярные и преколлагеновые волокна. Последние представляют собой начальную форму образования коллагеновых волокон в эмбриогенезе и при регенерации. В их состав входят коллаген III типа и повышенное количество углеводов, которые синтезируются ретикулярными клетками органов кроветворения. Они образуют трехмерную сеть — ретикулум, что и обусловило их название.

Эластические волокна

Наличие эластических волокон в соединительной ткани определяет ее эластичность и растяжимость. По прочности эластические волокна уступают коллагеновым. Форма поперечного разреза волокон округлая и уплощенная. В рыхлой волокнистой соединительной ткани эластические волокна широко анастомозируют друг с другом. Толщина эластических волокон обычно меньше коллагеновых (0, 2—1 мкм), но может достигать нескольких микрометров (например, в выйной связке). В составе эластических волокон различают микрофибриллярный и аморфный компоненты.

Основой эластических волокон является глобулярный гликопротеин — эластин, синтезируемый фибробластами и гладкими мышечными клетками. Для эластина характерно наличие двух производных аминокислот — десмозина и изодесмозина, которые участвуют в стабилизации молекулярной структуры эластина и придании ему способности к растяжению, эластичности.

Глобулярный белок эластин составляет первый, молекулярный, уровень организации эластического волокна.

Молекулы эластина вне клетки соединяются в цепочки — эластиновые протофибриллы - второй, надмолекулярный, уровень организации эластического волокна. Эластиновые протофибриллы в сочетании с гликопротеином ( фибриллином ) образуют микрофибриллы.

Четвертый уровень организации эластического волокна — волоконный. Зрелые эластические волокна содержат около 90 % аморфного компонента эластических белков (эластина) в центре, а по периферии — микрофибриллы.

Кроме зрелых эластических волокон, различают элауниновые и окситалановые волокна. В элауниновых волокнах соотношение микрофибрилл и аморфного компонента примерно равное, а окситалановые волокна состоят только из микрофибрилл.

Коллагеновые и эластические волокна в соединительной ткани образуют волокнистый остов с ориентированным, неориентированным и смешанным типами расположения волокон. Ориентированный (или оформленный) тип характеризуется параллельным расположением основной массы волокнистых структур (например, в сухожилиях, связках, фасциях). Неориентированный (или неоформленный) тип построен из волокон, не имеющих преимущественной ориентации (как например, дерма кожи). Смешанный тип волокнистого остова, как правило, имеет слоистое строение с чередованием направлений расположения волокнистых элементов.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 2031; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь