Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ФИЗИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД-КОЛЛЕКТОРОВ.



ВВЕДЕНИЕ

Задачи разработки нефтяных месторождений о добычи нефти решаются на основе специальной науки подземной гидродинамики, изучающей движение нефти, воды, газа и их смесей через горные породы, имеющее пустоты, одни из которых называют порами, другие трещинами. Жидкость, газ, смесь жидкости и газа, т.е. всякая текучая среда, часто в зарубежной литературе именуется общим термином флюид, если не ставится задача выделить характерные особенности движения данной среды. Горные породы, которые могут служить хранилищами нефти, газа и отдавать их при разработке носят название коллекторов.

Теоретической основой подземной гидродинамики является теория фильтрации - наука, описывающая данное движение флюида с позиций механики сплошной среды, т.е. гипотезы сплошности (неразрывности) течения.

Физико-химической основой – физика пласта, изучающая свойства коллекторов и флюидов, а также процессы их взаимодействия

 

 

ФИЗИКА ПЛАСТА

ФИЗИЧЕСКИЕ СВОЙСТВА ГОРНЫХ ПОРОД-КОЛЛЕКТОРОВ.

ТИПЫ ПОРОД-КОЛЛЕКТОРОВ

 

Классификация фильтрационных и коллекторских свойства пород нефтяного и газового пластов проводится по трём направлениям: геометрическое, тепло- механическое и связанное с наличием нескольких фаз.

 

ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ.

 

С геометрической точки зрения все коллектора можно подразделить на три группы: гранулярные (поровые), трещиноватые и смешанные.

К первому типу (рис.1) относятся коллекторы, сложенные песчано-алевритовыми породами, поровое пространство которых состоит из межзерновых полостей. Подобным строением порового пространства характеризуются также некоторые пласты известняков и доломитов. В чисто трещиноватых коллекторах (обычно сложенных преимущественно карбонатными отложениями, сланцами) поровое пространство образуется системой трещин. При этом участки коллектора между трещинами представляют собой плотные малопроницаемые нетрещиноватые блоки пород, поровое пространство которых практически не участвует в процессах фильтрации. На практике, однако, чаще встречаются трещиноватые коллекторы смешанного типа, поровое пространство которых включает как системы трещин, так и поровое пространство блоков (рис.2), а также каверны и карст. При изучении процессов фильтрации жидкостей и газов в таких трещиновато-пористых коллекторах принято их поровое пространство рассматривать как непрерывную сложную среду, состоящую из двух сред - трещиноватой и межзерновой, вложенных одна в другую.

Трещиноватые коллекторы смешанного типа в зависимости от наличия в них пустот различного вида подразделяют на подтипы - трещиновато-пористые, трещиновато-каверновые, трещиновато-карстовые и т.д.

При этом первая часть в названии определяет вид пустот по которым происходит фильтрация.

Анализ показывает, что около 60% запасов нефти в мире приурочено к песчаным пластам и песчаникам, 39% - к карбонатным отложениям и 1%-к выветренным метаморфическим и изверженным породам. Следовательно, породы осадочного происхождения - основные коллекторы нефти и газа.

В связи с разнообразием условий формирования осадков коллекторские свойства пластов различных месторождений могут изменяться в широких пределах. Характерные особенности большинства коллекторов — слоистость их строения и изменение во всех направлениях свойств пород, толщины пластов и других параметров.

 

ПОРИСТЫЕ КОЛЛЕКТОРА

К геометрическим параметрам пористой среды можно отнести:

1) гранулометрический (механическийм) состав;

2) пористость;

3) удельную поверхность;

4) проницаемость;

 

Упомянутые свойства пород находятся в тесной зависимости от химического состава, структурных и текстурных их особенностей. Структура породы определяется преимущественно размером и формой зерен. По размерам зерен различают структуры: псефитовую (более 2 мм), псаммитовую (0, 1-2 мм), алевритовую (0, 01-0, 1 мм), пелитовую (0, 01 мм и менее). К текстурным особенностям породы относят слоистость, характер размещения и расположения пород, взаиморасположение и количественное соотношение цемента и зерен породы и некоторые другие черты строения. Роль цемента часто выполняют глинистые вещества. Встречаются также цементы хемогенного происхождения (карбонаты, оксиды и гидроксиды, сульфаты).

 

ПОРИСТОСТЬ ГОРНЫХ ПОРОД

 

Под пористостью горной породы понимают наличие в ней пустот (пор). Коэффициентом полной (или абсолютной) пористости mа называется отношение суммарного объема пор Vпор в образце породы к объему образца V

mо = Vп/V. 2

Измеряется коэффициент пористости в долях единицы или в процентах объема породы. По происхождению поры и другие пустоты подразделяются на первичные и вторичные. К первичным относят пустоты между зернами, промежутки между плоскостями наслоения и т.д., образующиеся в процессе осадконакопления и формирования породы. Ко вторичным – поры, возникшие в результате последующих процессов разлома и дробления породы, растворения, возникновения трещин (например, вследствие доломитизации) и др.

На рис 5 показан слепок поровых каналов. Конфигурация пор довольно сложная – каналы по которым течет жидкость сильно различаются по размерам и форме и соединяются между собой самым беспорядочным образом. Точно определить размеры всех каналов невозможно, так же и их соотношения между собой.

Структура порового пространства пород обусловлена гранулометрическим составом частиц, их формой, химическим составом пород, происхождением пор, а также соотношением количества больших и малых пор.

В большой степени свойства пористых сред зависят от размеров поровых каналов. По величине поровые каналы нефтяных пластов условно разделяются на три группы:

1) сверхкапиллярные – более 0, 5 мм;

2) капиллярные – от 0, 5 до 0, 0002 мм (0, 2 мкм);

3) субкапиллярные — менее 0, 0002 мм (0, 2 мкм). По крупным (сверхкапиллярным) каналам и порам движение нефти, воды и газа происходит свободно, а по капиллярным – при значительном участии капиллярных сил.

В субкапиллярных каналах жидкости в такой степени удерживаются силой притяжения стенок каналов (вследствие малого расстояния между стенками канала жидкость в ней находится в сфере действия молекулярных сил материала породы), что практически в природных условиях перемещаться в них не могут.

Породы, поры которых представлены в основном субкапиллярными каналами, независимо от пористости практически непроницаемы для жидкостей и газов (глина, глинистые сланцы). Хорошие коллекторы нефти – те породы, поры которых представлены в основном капиллярными каналами достаточно большого сечения, а также сверхкапиллярными порами. Из сказанного следует, что при существующих в естественных условиях перепадах давлений не во всех пустотах жидкости и газы находятся в движении.

В реальных условиях твердые зерна породы обволакиваются тонкой плёнкой, остающейся неподвижной даже при значительных градиентах давления. В этом случае подвижный флюид занимает объём, меньший Vп. Кроме того, в реальной пористой среде есть тупиковые поры, в которых движения жидкости не происходит. Таким образом, наряду с полной пористостью часто пользуются понятием открытой и динамической пористостостями.

Коэффициентом открытой пористости m0 принято называть отношение объема открытых, сообщающихся пор к объему образца, а динамическая

m = Vпо/ V, 3

где Vпо – объем, занятый подвижной жидкостью.

Динамическая пристость характеризует относительный объем пор и пустот, через которые могут фильтроваться нефть и газ в условиях, существующих в пласте.

В дальнейшем под пористостью мы будем понимать динамическую пористость, кроме специально оговорённых случаев.

 

УДЕЛЬНАЯ ПОВЕРХНОСТЬ

 

Динамика фильтрационного течения в основном определяется трением флюида о скелет коллекторов, которое зависит от площади поверхности частиц грунта. В связи с этим одним из важнейших параметров является удельная поверхность Sуд , т.е. суммарная площадь поверхности частиц, содержащихся в единице объёма

Удельная поверхность нефтесодержащих пород с достаточной точностью определяется формулой

4

где k - проницаемость в дарси [мкм2].

Среднее значение Sуд для нефтесодержащих пород изменяется в пределах 40тыс. - 230тыс.м23. Породы с удельной поверхностью большей 230тыс. м23 непроницаемы или слабопроницаемы (глины, глинистые пески и т.д.).

 

ПРОНИЦАЕМОСТЬ

 

Важнейшей характеристикой фильтрационных свойств породы является проницаемость. Проницаемость - параметр породы, характеризующий её способность пропускать к забоям скважины флюиды. Различают проницаемости: абсолютную, эффективную или фазовую и относительную. Абсолютная - характеризует физические свойства породы и определяется при наличии лишь какой-либо одной фазы, химически инертной по отношению к породе. Абсолютная проницаемость - свойство породы и не зависит от свойств фильтрующегося флюида и перепада давления, если нет взаимодействия флюидов с породой. Фазовой (эффективной) называется проницаемость пород для данного флюида при наличии в порах многофазных систем. Эффективная проницаемость – это проводимость пористой среды, насыщенной несколькими фазами, для одной из фаз. Значение её зависит не только от физических свойств пород, но также от степени насыщенности порового пространства флюидами и их физических свойств. Относительной проницаемостью называется отношение фазовой к абсолютной. Проницаемость измеряется: в системе СИ - м2; технической системе - дарси (д); 1д=1, 02мкм2=1, 02 .10-12м2.

Физический смысл проницаемости k заключается в том, что проницаемость характеризует площадь сечения каналов пористой среды, по которым происходит фильтрация.

Величина проницаемости зависит от размера пор и связана с удельной поверхностью

Sуд=2m/k, 5

Проницаемость горных пород меняется в широких пределах: крупнозернистый песчаник - 1-0.1д; плотные песчаники - 0.01-0.001д.

 

 

ТРЕЩИНОВАТЫЕ ПОРОДЫ

Аналогомпористости для трещинных сред является трещиноватость mт или, иначе, коэффициент трещиноватости. Иногда данный параметр называют трещинной пористостью. Трещиноватостью называют отношение объёма трещин Vт ко всему объёму V трещинной среды.

. 6

Для трещинно-пористой среды вводят суммарную (общую) пористость, прибавляя к трещиноватости пористость блоков.

Второй важный параметр - густота. Густота трещин Гт - это отношение полной длины å li всех трещин, находящихся в данном сечении трещинной породы к удвоенной площади сечения f

7

Из (1.16) следует, что для идеализированной трещинной среды

mт=aтГdт, 8

где dт - раскрытость; aт - безразмерный коэффициент, зависящий от геометрии систем трещин в породе (1£ aт£ 3).

В качестве раскрытости (ширины трещины) берут среднюю величину по количеству трещин в сечении f. Среднюю гидравлическую ширину определяют исходя из гидравлического параметра - проводимости системы трещин. Ширина трещин существенно зависит от одновременного влияния следующих двух факторов, обусловленных изменением давления жидкости, действующего на поверхность трещин:

· увеличение объёма зёрен (пористых блоков) с падением давления жидкости;

· увеличение сжимающих усилий на скелет продуктивного пласта.

Указанные факторы возникают из-за того, что в трещиноватых пластах горное давление, определяющее общее напряжённое состояние среды, уравновешивается напряжениями в скелете породы и пластового давления (давлением жидкости в трещинах). При постоянстве горного давления снижение пластового давления при отборе жидкости из пласта приводит к увеличению нагрузки на скелет среды. Одновременно с уменьшением пластового давления уменьшаются усилия, сжимающие пористые блоки трещиноватой породы.

Поэтому трещинный пласт - деформируемая среда. В первом приближении можно считать

, 9

где dт0 - ширина трещины при начальном давлении р0 ; b*т=bп l /dт0 - сжимаемость трещины; bп - сжимаемость материалов блоков; l - среднее расстояние между трещинами.

Для трещинных сред l/ dт > 100 и поэтому сжимаемость трещин высока.

 

НАПРЯЖЕННОЕ СОСТОЯНИЕ ПОРОД

 

Породы, залегающие в недрах Земли, находятся под влиянием горного давления, которое обусловлено весом пород, тектоническими силами, пластов давлением и термическими напряжениями, возникающими под влиянием тепла земных недр. В результате воздействия на породу комплекса упомянутых сил элемент породы, выделенный из массива, может находиться в общем случае в условиях сложного напряженного состояния, характеризующегося тем, что на него действуют как нормальные, так и касательные напряжения.

Нормальные и касательные напряжения, действующие на элемент породы, вызывают соответствующие деформации его граней. Нормальные составляющие напряжений вызывают деформации сжатия элемента или растяжения, а касательные напряжения - деформации сдвига граней.

Мерами деформируемого состояния являются следующие параметры: Е –модуль Юнга, n - коэффициент Пуассона; G – модуль сдвига; b -модуль объёмной упругости.

Для большинства горных пород модуль Юнга изменяется в пределах от 109 до 1011 Па, а коэффициент Пуассона от 0 до 0, 5.

Единой теории, описывающей напряженное состояние горных пород, нет по причине чрезвычайной сложности процесса из-за влияния на него множества геологических, физических и тепловых факторов. При этом результаты относятся лишь к частным конкретным геологическим условиям.

До нарушения условий залегания пород скважиной внешнее давление от действия массы вышележащих пород и возникающие в породе ответные напряжения находят в условиях равновесия.

Составляющие этого нормального поля напряжений имеют следующие значения По вертикали

10

где sz - вертикальная составляющая напряжений; r - плотность породы; g - yскорение свободного падения; Н - глубина залегания пласта. По горизонтали (в простейшем случае)

, 11

где n коэффициент бокового распора.

Значение n для пластичных и жидких пород типа плывунов равно единице (тогда напряжения определятся гидростатическим законом), а для плотных и крепких пор в нормальных условиях, не осложненных тектонически, выражается во многих случаях долями единицы.

Т.к. коэффициент бокового распора, то 0 < п< 0, 5.

При выполнении упомянутых условий горизонтальные напряжения в породах меньше вертикальных, что, по-видимому, часто имеет место при небольшой глубине залегания, если в разрезе нет пород с пластическими свойствами. В случае пластичных и текучих горных пород п = 1, для хрупких пород значения п составляют 03-0, 7.

Предыдущая формула выведена для условия, когда справедливо предположение об отсутствии деформации пласта в горизонтальном направлении и когда не учитывается пластичность горных пород. В условиях реальных пластов эти предположения не всегда справедливы и возможны более сложные напряженные состояния горных пород.

При достаточно больших давлениях на значительных глубинах (2500-3000 м), по-видимому, происходит выравнивание напряжений вплоть до величин, определяемых гидростатическим законом, так как предполагается, что за длительные теологические периоды породы испытывают пластические или псевдопластические деформации. Однако чаще всего вследствие интенсивных тектонических процессов, происходивших в земной коре в течение геологических периодов, горные породы многократно деформировались, что, по-видимому, сопровождалось возникновением значительных различий между главными напряжениями. В областях, где в результате тектонических процессов происходило боковое сдавливание пород и образование надвига, наибольшим должно быть горизонтальное напряжение, которое, по-видимому, может иногда в 2-3 раза превышать вертикальное горное давление. В зонах возникновения сбросов, не сопровождавшихся боковым сжатием, вертикальные напряжения пород должны значительно превышать горизонтальные.

 

Основные понятия поверхностных и капиллярных сил

 

При рассмотрении углеводородных систем необходимо учитывать не только силы, возникающие на границе раздела газа и жидкости, но также и силы, действующие на границе раздела между двумя несмешивающимися жидкими фазами и между жидкостями и твердыми телами. Комбинация всех действующих поверхностных сил определяет смачиваемость и капиллярное давление в пористой среде.

 

Смачиваемость. Адгезионное натяжение (работа адгезии), являющееся функцией поверхностного натяжения, определяет, какая из двух исследуемых фаз лучше смачивает поверхность твердого тела. Рисунок 8 иллюстрирует случай, когда в контакте с твердым телом находятся две жидкости (нефть и вода). По определению, угол смачивания q измеряется в сторону жидкой фазы, имеющей большую плотность, и изменяется от 0 до 180о. В соответствии с этим определением адгезионное натяжение можно выразить следующим образом:

, 21

где Ан адгезионное натяжение; sтн — поверхностное натяжение на границе раздела нефть — твердое тело; sтв — поверхностное натяжение на границе раздела вода — твердое тело; sвн — поверхностное натяжение на границе раздела вода — нефть.

Положительная величина адгезионного натяжения указывает на то, что вода избирательно лучше смачивает поверхность твердого тела. Если адгезионное натяжение равно нулю, следовательно, обе фазы имеют одинаковое сродство с твердым телом. Величина адгезионного натяжения, определяемая выражением 21, характеризует способность смачивающей фазы прилипать к твердому телу и растекаться по его поверхности. При высоком значении адгезионного натяжения или, что одно и то же, при малом угле смачивания вода будет быстро растекаться по поверхности твердого тела, стремясь покрыть эту поверхность. Если угол избирательного смачивания велик, то для того, чтобы заставить воду растекаться по поверхности, потребуется внешний источник энергии. В связи с этим смачивающая фаза стремится занять пустоты наименьших разиеров, а несмачивающая – более крупные открытые каналы. Для системы «нефть — вода — твердое тело» в зависимости от химического состава фаз и породы поверхность твердого тела может быть или гидрофильной ( q> 0 ) или гидрофобной( q< 0 ). Большинство пород нефтяных месторождений гидрофобны по отношению к воде и гидрофильны по отношению к нефти.

Подъем жидкостей в капиллярах. Рассмотрим капиллярную трубку очень малого диаметра. Если такую трубку одним концом опустить в сосуд со свободным уровнем жидкости, то жидкость будет подниматься в трубке выше ее свободного уровня в сосуде. Эта разница уровней возникает вследствие действия сил взаимодействия (адгезионного натяжения) между внутренней стенкой трубки и жидкостью, которые преодолевают вес столба жидкости в трубке. Вследствие адгезионного натяжения жидкость стремится прилипнуть к внутренней поверхности трубки и будет подниматься в ней до тех пор, пока равнодействующая сил, действующих на жидкость вверх, не уравновесится весом столба жидкости, находящейся в трубке (рис 9).

Давление в жидкой фазе в капилляре под границей раздела газ – жидкость меньше, чем давление в газовой фазе над этой границей. Разница давлений по обе стороны границы раздела называется капиллярным давлением системы рк. Из приравнивания сил веса жидкости и подъёмной на поверхности раздела в капилляре получим выражение для определения капиллярного давления, как функции поверхностных сил

. 22

Из данного соотношения видно, что к увеличению высоты подъёма воды в капилляре приводит уменьшение радиуса капилляра и уменьшение угла смачивания.

Последнее объясняет образование языков заводнения через наименее проницаемые коллектора.

Следует отметить, что характер кривизны поверхности раздела таков, что давление в несмачивающей фазе больше, чем давление в смачивающей фазе. Поэтому в пористой среде смачивающая фаза находится под меньшим давлением, чем несмачивающая.

 

 
 

Порядок насыщения пористой среды. Для изучения влияния порядка насыщения пористой среды необходимо рассмотреть вопрос о порах переменного размера. Для капиллярной трубки переменного диаметра высота подъема жидкости зависит от адгезионного натяжения, плотности жидкости и изменения диаметра капилляра по длине. Если к поверхности раздела фаз в таком капилляре приложено давление, то эта поверхность будет стремиться занять новое равновесное положение, в результате чего объем жидкости в капилляре уменьшится. Уменьшение объема воды означает уменьшение ее насыщенности и сопровождается увеличением капиллярного давления.

Таким образом, между капиллярным давлением и насыщенностью смачивающей фазы имеется обратная функциональная зависимость и более низким насыщенности соответствуют меньшие значения радиусов кривизны поверхности раздела. Поэтому смачивающая фаза будет занимать мелкие тупиковые и открытые поры системы, оставляя большие открытые каналы несмачивающей фазе. Насыщенность является не только функцией капиллярного давления, но зависит также от порядка насыщения пористого материала.

Например, в непрерывной капиллярной трубке, подобной изображенной на рис. 10, насыщенность при одних и тех же значениях капиллярного давления зависит от того, была ли первоначально система целиком заполнена смачивающей фазой или только начинает насыщаться ею. При поступлении несмачивающей фазы в трубку, заполненную смачивающей фазой, вытеснение последней будет происходить до тех пор, пока капиллярное давление не станет равно сумме приложенного давления и давления, создаваемого столбом оставшейся смачивающей жидкости. В случае, доказанном ва рис. 10а, порода насыщена смачивающей фазой на 80% при сравнительно более высоком значении капиллярного давления. Теперь рассмотрим случай, когда трубка первоначально заполнена несмачивающей фазой и погружена в сосуд с жидкостью, избирательно лучше смачивающей поверхность трубки. Смачивающая фаза начнет самопроизвольно впитываться в трубку под действием силы адгезионного натяжения между ею и поверхностью трубки до тех пор, пока сила адгезии не.уравновесится силой веса столба жидкости. Как показано на рис. 10б, насыщенность в этом случае составляет только 10%. В приведенном примере разной насыщенности (10 и 80%) соответствует одинаковое капиллярное давление. Из этого весьма упрощенного примера видно, что соотношение между насыщенностью смачивающей фазы и капиллярным давлением зависит от порядка насыщения. Для процесса дренирования пористой системы может, быть получено большее значение насыщенности, чем для случая впитывания смачивающей фазы в эту пористую систему.

Таким образом, соотношение «капиллярное давление — насыщенность» зависит от: 1) размера пор и их распределения; 2) свойств насыщающих фаз и природы поверхности твердого тела, участвующих в этом процессе, и 3) порядка насыщения.

 

При определении относительной проницаемости предполагается, что каждая фаза в общем потоке многофазной среды не зависит от других фаз. Действительно, при совместном течении двух фаз в пористой среде, по крайней мере, одна из них образует систему, граничащую со скелетом; породы и частично с другой жидкостью. Из-за избирательного смачивания твердой породы одной из жидкостей площадь контакта каждой из фаз со скелетом пористой среды значительно превышает площадь контакта фаз между собой. Это позволяет предположить, что каждая фаза движется по занятым ею поровым каналам под действием своего давления независимо от других фаз, т. е. так, как если бы она была ограничена только твердыми стенками. При этом, естественно, сопротивление, испытываемое каждой фазой при совместном течении, отлично от того, которое было бы при фильтрации только одной из них.

Будем считать для определенности, что s=s1 - насыщенность вытесняющей (или более смачивающей) фазы. Тогда из (24) имеем s2=1—s. Понятие относительной фазовой проницаемости ki(s), играет важную роль при изучении совместного течения нескольких жидкостей в пористой среде. Мы будем исходить из условия, что относительные проницаемости являются однозначными функциями насыщенностей и не зависят от скорости фильтрации и отношения вязкостей движущихся фаз. На рис. 11 приведены типовые кривые относительных фазовых проницаемостей для двухфазной смеси.

На этом графике показаны безразмерные относительные фазовые проницаемости k 1 и k 2; sА – связанная компонента первой, более смачивающей фазы (для воды обычно около 20%).

Характерная несимметричная форма кривых относительной проницаемости объясняется тем, что при одной и той же насыщенности более смачивающая фаза занимает преимущественно мелкие поры и относительная проницаемость у неё меньше. При малых насыщенностях часть каждой из фаз находится в несвязном состоянии в виде изолированных мелких капель или целиков и не участвует в движении. Поэтому, начиная с некоторой насыщенности, каждая фаза полностью переходит в несвязное состояние и её относительная проницаемость становится равной нулю, т.е. k1(s)=0 при s< sA, k2(s)=0 при s> 1-sA. Движение этой фазы может происходить только, если s > sА. Для второй фазы связанная компонента равна 1- sA. Заметим, что хотя речь идет о совместной фильтрации двух несмешивающих жидкостей, приходится различать вытесняющую и вытесняемые фазы, т.к. относительные проницаемости различны в зависимости от того, какая из фаз (более или менее смачиваемая) первоначально заполняла пористую среду, т.е. существует гистерезис относительных проницаемостей.

Сумма относительных проницаемостей для каждого фиксированного значения s меньше 1:

, 0< s < 1.

Это означает, что присутствие связанной смачивающей фазы мало влияет на течение не смачивающей жидкости, тогда как присутствие остаточной не смачивающей фазы значительно " стесняет" движение смачивающей фазы.

Введенные выше понятия можно обобщить на случай совместного движения трех несмешивающихся флюидов: нефти, газа и воды. Если обозначить эти флюиды индексами " н", " г" и " в", то можно ввести относительные проницаемости, точно так же как это было сделано для двух жидкостей. При этом фазовые проницаемости являются уже функциями двух независимых насыщенностей и определяются из треугольных диаграмм (рис.12).

На треугольной диаграмме показаны границы преобладания фаз. Из диаграммы видно, что при газонасыщенности более 35 % поток состоит только из газа, зелёная область показывает на наличие всех фаз. По диаграмме можно определить, какие компоненты движутся в пласте при данном соотношении величин насыщенности пор фазами.

Характер зависимостей определяется различной степенью смачивания твердых зерен породы фазами, причем оказывается, что относительная проницаемость зависит только от водонасыщенности - наиболее проницаемой фазы - воды, и почти не зависит от нефте- и газонасыщенности.

На основании экспериментов можно считать, что относительная фазовая проницаемость в многофазном потоке почти не зависит от вязкости жидкости, ее плотности, внутрижидкостного натяжения, градиента давления.

 

 

 
 

Влияние температуры на фазовые проницаемости нефти, газа и воды. Термические методы увеличения коэффициента нефтеотдачи в последние годы получили широкое распространение. Среди этих методов преобладают закачка в пласт водяного пара, горячей воды и парогазовое воздействие.

При моделировании процессов совместной фильтрации нефти, газа и воды в пласте принимают, что их относительные фазовые проницаемости зависят только от насыщенности пористой среды жидкой (газовой) фазой и не зависят от температуры. В расчетах используются кривые относительных фазовых проницаемостей, получение экспериментально при комнатной температуре.

Сопоставление рассчитанных коэффициентов нефтеотдачи и фактических промысловых данных показывало значительные расхождения. Поэтому были предприняты обширные аналитические и лабораторные исследования влияния температуры на относительные фазовые проницаемости нефти, газа и воды на искусственных и естественных кернах [3].

Температура опытов изменялась от комнатной (18-20°С) до 282°С. В результате лабораторных исследований были сделаны следующие выводы.

1. С ростом температуры увеличивается водонасыщенность пористой среды и уменьшается остаточная нефтенасыщенность (рис. 13).

2. С ростом температуры уменьшается абсолютная проницаемость породы для воды, не изменяется абсолютная проницаемость для нефти и газа.

3. С ростом температуры значительно увеличивается относительная фазовая проницаемость для нефти и уменьшается относительная фазовая проницаемость для воды при постоянной насыщенности пористой среды. Кривые относительных фазовых проницаемостей для нефти и воды при увеличении температуры смещаются вправо (рис 14).

4. Гистерезис между вытеснением нефти водой и капиллярным впитыванием воды уменьшается при увеличении температуры.

5. Контактный угол на границе нефть-вода—порода уменьшается при увеличении температуры, т.е. пористая среда становится более смачиваемой водой.

2. Относительная фазовая проницаемость для нефти увеличивается, а для воды уменьшается при возрастании температуры.

3. Использование в расчетах кривых относительных фазовых проницаемостей для нефти и воды, полученных экспериментально при комнатной температуре, приводит к занижению коэффициента нефтеотдачи.

 

ФИЗИЧЕСКИЕ СВОЙСТВА НЕФТИ

ФИЗИЧЕСКОЕ СОСТОЯНИЕ НЕФТИ

ПЛОТНОСТЬ ПЛАСТОВОЙ НЕФТИ

 

В связи с изменением в пластовых условиях объема нефти под действием растворимого газа и температуры плотность ее в пласте обычно ниже плотности сепарированной нефти. Известны нефти, плотность которых в пласте меньше 500 кг/м3 при плотности сепарированной нефти 800 кг/м3.

Не все газы, растворяясь в нефти, одинаково влияют на ее плотность. С по-вышением давления плотность нефти значительно уменьшается при насыщении её углеводородными газами (метаном, пропаном, этиленом). Плотность нефтей, насыщенных азотом или углекислым газом, несколько возрастает с ростом давления.

Рост давления выше давления насыщения нефти газом также способствует некоторому увеличению ее плотности (рис. 18, правая ветвь кривой).


 

ВЯЗКОСТЬ ПЛАСТОВОЙ НЕФТИ


Вязкость пластовой нефти всегда значительно отличается от вязкости сепа-рированной вследствие большого количества растворенного газа, повышенных пластовой температуры и давления. При этом все нефти подчиняются следующим общим закономерностям: вязкость их уменьшается с повышением количества газа в растворе, с увеличением температуры (рис.19); повышение давления вызывает некоторое увеличение вязкости.

Увеличение вязкости нефти с ростом давления заметно лишь при давлениях выше давления насыщения. До этого увеличение вязкости с ростом давления значительно перекрывается понижением ее вследствие влияния растворяющегося газа (рис. 20). Вязкость нефти зависит также от состава и природы растворенного газа. При растворении азота вязкость увеличивается, а при растворении углеводородных газов она понижается тем больше, чем выше их молекулярная масса. Практически вязкость нефти в пластовых условиях различных месторождений изменяется от многих сотен МПа•с до десятых долей мПа•с.

В пластовых условиях вязкость нефти может быть в десятки раз меньше вязкости сепарированной нефти. Следует учитывать, что с понижением давления вязкость пластовой нефти непрерывно изменяется (рис. 19). При отсутствии азота перелом на кривых зависимости вязкости от давления наступает в области, близкой к давлению насыщения. Если в нефти содержатся значительные количества азота, перелом кривой может не соответствовать давлению насыщения в связи с уменьшением вязкости нефти при выделении азота.

 

ОСНОВНЫЕ ПОНЯТИЯ ФАЗОВОГО СОСТОЯНИЯ

СХЕМЫ ФАЗОВЫХ ПРЕВРАЩЕНИЙ

В процессе разработки месторождений в пластах непрерывно изменяется давление, количественное соотношение газа и нефти. Это сопровождается непрерывными изменениями состава газовой и жидкой фаз со взаимным их переходом.

Особенно интенсивные процессы таких превращений происходят при движении нефти по стволу скважины. Из-за быстрого падения давления из нефти выделяется значительное количество газа, и около устья поток превращается иногда в тонкодисперсную взвесь капель нефти в газовой среде.

Дальнейшее движение нефти к потребителю также сопровождается непрерывными фазовыми превращениями, например, из нефти, уже не содержащей газ, стараются извлечь и уловить наиболее летучие жидкие фракции для уменьшения потерь нефтепродуктов от испарения при хранении их в резервуарах.

Фазовые диаграммы

Естественные углеводородные системы состоят из большого числа компонентов, причем это не только углеводороды парафинового ряда, но и углеводороды, относящиеся к другим группам. Фазовое состояние смеси углеводородов зависит от ее состава, а также от свойств индивидуальных компонентов.

Типичная фазовая диаграмма многокомпонентной смеси (рис.21) в координатах давление - температура имеет петлеобразный вид, т.е. отличается от соответствующей фазовой диаграммы чистого вещества, изображающейся в виде одной монотонно – возрастающей, вогнутой к оси температур кривой с одной конечной (критической ) точкой. Прежде чем перейти к обсуждению особенностей этой диаграммы, дадим определение некоторых важных физических понятий, связанных с этой диаграммой.


Поделиться:



Популярное:

  1. Агрофизические факторы плодородия почвы
  2. Геометризация трещиноватости массива горных пород.
  3. Глубинные карты: структурные карты; карты изопахит; карты фаций; падеогеологические карты; геофизические карты; геохимические карты; другие типы карт. Сухие скважины.
  4. Гранулометрический состав горных пород
  5. ДЕФОРМАЦИОННЫЕ И ПРОЧНОСТНЫЕ СВОЙСТВА ГОРНЫХ ПОРОД
  6. Классификация магматических горных пород.
  7. ЛЕКЦИЯ 2. Общая характеристика гражданского правоотношения. Физические лица как субъекты гражданских правоотношений.
  8. Любители горных лыж и спортсмены
  9. Механические свойства горных пород
  10. Минералы, их физические свойства и классификация
  11. Налоги – это платежи, которые в обязательном порядке уплачивают в доход государства юридические и физические лица. Выплаты эти принудительны и безвозмездны.
  12. Некоммуникативные методы (документальные и физические)


Последнее изменение этой страницы: 2016-03-25; Просмотров: 2475; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.081 с.)
Главная | Случайная страница | Обратная связь