Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Синхронные машины. Назначение и устройство.



Назначение. Синхронные машины используют главным образом в качестве источников электрической энергии переменного тока; их устанавливают на мощных тепловых, гидравлических и атомных электростанциях, а также на передвижных электростанциях и транспортных установках (тепловозах, автомобилях, самолетах). Конструкция синхронного генератора определяется в основном типом привода. В зависимости от этого различают турбогенераторы, гидрогенераторы и дизель-генераторы. Турбогенераторы приводятся во вращение паровыми или газовыми турбинами, гидрогенераторы — гидротурбинами, дизель-генераторы — двигателями внутреннего сгорания. Синхронные машины широко используют и в качестве электродвигателей при мощности 100 кВт и выше для привода насосов, компрессоров, вентиляторов и других механизмов, работающих при постоянной частоте вращения. Для генерирования или потребления реактивной мощности с целью улучшения коэффициента мощности сети и регулирования ее напряжения применяют синхронные компенсаторы.

В электробытовых приборах (магнитофонах, проигрывателях, киноаппаратуре) и системах управления широкое применение получили различные синхронные микромашины — с постоянными магнитами, индукторные, реактивные, гистерезисные, шаговые.

В 1876 г. русский ученый П. Н. Яблочков разработал несколько образцов многофазных синхронных генераторов с электромагнитным возбуждением и электрически несвязанными фазами, предназначенных для питания созданных им дуговых электрических ламп (свечи Яблочкова). Первый трехфазный синхронный генератор изобрел известный русский электротехник М. О. Доливо-Добровольский. Этот генератор имел мощность 230 кВ • А, приводился во вращение от гидротурбины и обеспечивал электроснабжение международной электротехнической выставки в г. Франкфурте в 1891 г. по четырехпроводной электрической линии трехфазного тока.

Основная электромагнитная схема синхронных машин с тех пор оставалась неизменной, но усовершенствовалось их конструктивное выполнение и возросли электромагнитные нагрузки, что позволило значительно улучшить массогабаритные и энергетические показатели и нагрузочную способность синхронных машин. Особенно большие выгоды в этом отношении дало применение в крупных машинах водородного и водяного охлаждения.

В разработке теорий синхронных машин и совершенствовании их конструкции важная роль принадлежит советским ученым A. Е. Алексееву, А. А. Гореву, Р. А. Лютеру, М. П. Костенко, B. А. Толвинскому и др. Синхронные генераторы большой мощности разрабатывались на основе работ А. И. Бертинова, А. И. Глебова, Д. Е. Ефремова, В. В. Романова, И. Д. Урусова, Г. М. Хуторецкого и др.

В настоящее время советской электропромышленностью для тепловых и атомных электростанций разработана и выпускается серия унифицированных турбогенераторов мощностью 63, 125, 320, 500 и 800 МВт и уникальные турбогенераторы мощностью 1000 МВт для атомных электростанций и 1200 МВт для тепловых электростанций. Для гидроэлектростанций созданы гидрогенераторы мощностью 350, 590 и 640 МВт, а также обратимые генераторы-двигатели для гидроаккумулирующих электростанций мощностью 200-300 МВт. Для высоковольтных линий электропередачи выпускаются синхронные компенсаторы мощностью до 350 MB • А. Планируется начать разработки турбогенераторов мощностью 1600—2000 МВт и гидрогенераторов мощностью 1000 МВт.

Конструктивная схема машины. Синхронные машины выпол­няют с неподвижным или вращающимся якорем. Машины большой мощности для удобства отвода электрической энергии со статора или подвода ее выполняют с неподвижным якорем (рис. 6.2, а).Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0, 3—2%), подвод постоянного тока к обмотке возбуждения с помощью двух колец не вызывает особых затруднений. Синхронные машины не­большой мощности выполняют как с неподвижным, так и с вра­щающимся якорем. В обращенной синхронной машине с вращающимся якорем и неподвижным индуктором (рис. 6.2, б) нагрузка подключается к обмотке якоря посредством трех колец.

Рис. 6.2. Конструктивная схема синхронной машины с неподвижным и вращающимся якорем: 1 - якорь; 2 - обмотка якоря; 3 - полюсы индуктора; 4 - обмотка возбуждения; 5 - кольца и щетки

 

Рис. 6.3. Роторы синхронных неявнополюсной и явнополюсной машин: 1 — сердечник ротора; 2 — обмотка возбуждения

Конструкция ротора. В синхронных машинах применяют две различные конструкции ротора: неявнополюсную — с неявновыраженными полюсами (рис. 6.3, а) и явнополюсную — с явновыраженными полюсами (рис. 6.3, б).

Двух- и четырехполюсные машины большой мощности, работающие при частоте вращения ротора 1500 и 3000 об/мин, изготовляют, как правило, с неявнополюсным ротором. Применение в них явнополюсного ротора невозможно по условиям обеспечения необходимой механической прочности крепления полюсов и обмотки возбуждения. Обмотку возбуждения в такой машине размещают в пазах сердечника ротора, выполненного из массивной стальной поковки, и укрепляют немагнитными клиньями. Лобовые части обмотки, на которые воздействуют значительные центробежные силы, крепят с помощью стальных массивных бандажей. Для получения приблизительно синусоидального распределения магнитной индукции обмотку возбуждения укладывают в пазы, занимающие 2/3 полюсного деления.

Явнополюсный ротор обычно используют в машинах с четырьмя полюсами и более. Обмотку возбуждения в этом случае выполняют в виде цилиндрических катушек прямоугольного сечения, которые размещают на сердечниках полюсов и укрепляют с помощью полюсных наконечников. Ротор, сердечники полюсов и полюсные наконечники изготовляют из листовой стали.

Рис. 6.4. Устройство явнополюсной машины: 1 — корпус; 2 — сердечник статора; 3— обмотка статора; 4 — ротор; 5 — вентилятор; 6 — выводы обмоток; 7 —контактные кольца; 8 — щетки; 9 - возбудитель

 

Рис. 6.5. Устройство пусковой обмотки в синхронных двигателях: 1 — полюсы ротора; 2 — короткозамыкающие кольца; 3 — стержни «беличьей клетки»; 4 — полюсные наконечники

В синхронной машине (рис. 6.4) сердечник статора собирают из изолированных листов электротехнической стали и на нем располагают трехфазную обмотку якоря. На роторе размещают обмотку возбуждения. В явнополюсных машинах полюсным наконечникам обычно придают такой профиль, чтобы воздушный зазор между полюсным наконечником и статором был минимальным под серединой полюса и максимальным у его краев, благодаря чему кривая распределения индукции в воздушном зазоре приближается к синусоиде.

В полюсных наконечниках синхронных двигателей с явно-полюсным ротором размещают стержни пусковой обмотки (рис. 6.5), выполненной из материала с повышенным удельным электрическим сопротивлением (латуни). Такую же обмотку (типа «беличья клетка»), состоящую из медных стержней, применяют и в синхронных генераторах; ее называют успокоительной илидемпферной обмоткой, так как она обеспечивает быстрое затухание колебаний ротора, возникающих в переходных режимах работы синхронной машины. Если синхронная машина выполнена с массивными полюсами, то при пуске и переходных режимах в них возникают вихревые токи, действие которых эквивалентно действию тока в короткозамкнутой обмотке.

Рис. 6.6. Схемы возбуждения синхронной Машины: 1 - обмотка якоря; 2 - ротор генератора; 3 - обмотка возбуждения; 4 - кольца; 5 - щетки; 6 - регулятор напряжения; 7 - возбудитель; 8 - выпрямитель; 9 - обмотка якоря возбудителя; 10 - ротор возбудителя; 11 - обмотка возбуждения возбудителя; 12- подвозбудитель; 13 - обмотка возбуждения подвозбудителя

Питание обмотки возбуждения. В зависимости от способа питания обмотки возбуждения различают системы независимого возбуждения и самовозбуждения. При независимом возбуждении в качестве источника для питания обмотки возбуждения служит генератор постоянного тока (возбудитель), установленный на валу ротора синхронной машины (рис. 6.6, а), либо отдельный вспомогательный генератор, приводимый во вращение синхронным или асинхронным двигателем. При самовозбуждении обмотка возбуждения питается от обмотки якоря через управляемый или неуправляемый выпрямитель — обычно полупроводниковый (рис. 6.6, б). Мощность, необходимая для возбуждения, сравнительно невелика и составляет 0, 3 — 3% от мощности синхронной машины.

В мощных генераторах кроме возбудителя обычно применяют подвозбудитель — небольшой генератор цостоянного тока, служащий для возбуждения основного возбудителя. Основным возбудителем в этом случае может служить синхронный генератор совместно с полупроводниковым выпрямителем. Питание обмотки возбуждения через полупроводниковый выпрямитель, собранный на диодах или на тиристорах, широко применяют как в двигателях и генераторах небольшой и средней мощности, так и в мощных турбо- и гидрогенераторах (тиристорная система возбуждения). Регулирование тока возбуждения Iв осуществляется автоматически специальными регуляторами возбуждения, однако в машинах небольшой мощности применяется регулировка и вручную реостатом, включенным в цепь обмотки возбуждения. При необходимости форсирования возбуждения генератора повышают напряжение возбудителя и увеличивают выходное напряжение выпрямителя.

В современных синхронных генераторах применяют так называемую бесщеточную систему возбуждения (рис. 6.6, в). При этом в качестве возбудителя используют синхронный генератор, у которого обмотка якоря расположена на роторе, а выпрямитель укреплен непосредственно на валу. Обмотка возбуждения возбудителя получает питание от подвозбудителя, снабженного регулятором напряжения. При таком способе возбуждения в цепи питания обмотки возбуждения генератора отсутствуют скользящие контакты, что существенно повышает надежность системы возбуждения.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 738; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь