Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Трехфазное АПВ на линиях с двусторонним питанием



Общие сведения

 

АПВ линий с двусторонним питанием имеет некоторые особенности, что определяется наличием напряжения по обоим концам линии. Первая особенность состоит в том, что АПВ линии должно производиться лишь после того, как она будет отключена с обеих сторон, что необходимо для деионизации воздушного промежутка в месте повреждения.

Вторая особенность определяется тем, что успешное включение линии (замыкание в транзит) может сопровождаться большими толчками тока и активной мощности, поскольку по обоим концам отключившейся линии имеется напряжение.

 

 

Рис. 14.

 

В тех случаях, когда две электростанции или две части энергосистемы связаны несколькими линиями (рис. 14. а)), отключение одной из них не приводит к нарушению синхронизма и значительному расхождению по углу и значению напряжений по концам отключившейся линии. АПВ в этом случае не будет сопровождаться большим толчком уравнительного тока. Вследствие этого на линиях с двусторонним питанием допускается применение простых АПВ, аналогичных рассмотренным выше, если две электростанции или две части энергосистемы имеют три или более связей близкой пропускной способности.

Рекомендовано простое АПВ, установленное с одного конца, дополнять устройством контроля наличия напряжения на линии. Благодаря этому включение от АПВ на устойчивое КЗ производится только один раз с той стороны, где отсутствует устройство контроля напряжения на линии. С той же стороны, где контролируется напряжение, включение выключателя будет происходить лишь в том случае, если повреждение устранилось и линия, включенная с противоположного конца, держит напряжение.

При включении действием АПВ линии с двусторонним питанием, когда синхронизм между двумя частями энергосистемы не был нарушен, могут возникать синхронные качания, вызванные толчком активной мощности в момент включения.

· Синхронными качаниями называются периодические колебания угла между ЭДС, не превышающие 180°. Обычно синхронные качания не сопровождаются большими колебаниями угла и быстро затухают. При синхронных качаниях ни одна РЗ не должна действовать, чтобы ложно не отключить линию, усугубив ситуацию в энергосистеме.

Если две электростанции или две части энергосистемы связаны единственной линией электропередачи, как показано на рис. 14. б), по которой передается активная мощность, каждое отключение этой линии будет приводить к несинхронной работе разделившихся частей энергосистемы. При этом в одной из частей энергосистемы возникнет дефицит активной мощности, вследствие чего частота в ней будет уменьшаться, а в другой будет избыток активной мощности, что вызовет повышение частоты. Поскольку напряжения в разделившихся частях энергосистемы будут иметь разную частоту, при включении отключившийся линии угол между напряжениями по её концам может иметь большое значение, вследствие чего АПВ вызовет большой уравнительный ток. Кроме того, замыкание двух частей энергосистемы в этом случае будет сопровождаться более или менее длительным асинхронным режимом.

· Асинхронным режимом называется режим, при котором угол между ЭДС увеличивается, проходя через значения 180° и 360°. Ток при этом изменяется от минимального значения, близкого к нулю, до максимального, которое может превышать токи КЗ. Вместе с тем асинхронный режим сопровождается резким снижением напряжения в пределе до нуля на промежуточных п/ст, расположенных на электропередаче, связывающей две части энергосистемы, работающие несинхронно.

Большие толчки тока и резкие понижения напряжения при длительном асинхронном режиме представляют опасность для электрооборудования и могут привести к серьёзному расстройству работы энергосистемы.

В большинстве случаев асинхронный режим завершается ресинхронизацией, т.е. выравниванием частот несинхронно работающих частей и восстановлением синхронизма. В тех случаях, когда асинхронный режим затягивается, осуществляется деление несинхронно работающих частей оперативным персоналом или автоматически с помощью специальных делительных устройств.

В России для линий с двусторонним питанием разработано и эксплуатируется большое количество ТАПВ разных типов, которые можно объединить в три группы:

1) устройства, допускающие несинхронное включение разделившихся частей энергосистемы, – несинхронное АПВ (НАПВ);

2) устройства, допускающие АПВ, когда напряжения по концам отключившейся линии синхронны или когда разность частот этих напряжений невелика, т.е. условия близки к синхронным, – быстродействующие АПВ (БАПВ), АПВ с улавливанием синхронизма (АПВУС) и др.;

3) устройства, осуществляющие АПВ после отключения источников несинхронного напряжения (генераторов иди синхронных компенсаторов), - АПВ линий с выделенной нагрузкой или после снятия с генераторов и синхронных компенсаторов возбуждения – АПВ с самосинхронизацией (АПВС).

 


 

ЛЕКЦИЯ №7

Несинхронное АПВ

НАПВ является наиболее простым устройством, допускающим включение разделившихся частей энергосистемы независимо от разности их напряжений. Схема АПВ при этом выполняется, как описано выше, без каких-либо дополнительных блокировок. Для предотвращения включения с обоих сторон концов линии на устойчивое КЗ, а также для обеспечения при НАПВ правильной работы РЗ АПВ с одного конца линии выполняется с контролем наличия напряжения на линии. Включение линии при успешном НАПВ сопровождается сравнительно большими толчками тока и активной мощности, а также более или менее длительными качаниями. На основании теоретических и экспериментальных исследований предложены определенные нормы, определяющие допустимость применения НАПВ. (Определяется кратность периодической составляющей тока КЗ в предполагаемом месте установки НАПВ и сравнивается с нормативной).

Преимуществами схем НАПВ, обусловившими на определенном этапе их широкое распространение в энергосистемах России, являются их простота и возможность применения на выключателях всех типов. Обычно после НАПВ происходит успешная ресинхронизация двух частей энергосистемы или электростанции с энергосистемой. Вместе с тем следует иметь в виду, что поскольку НАПВ сопровождается большими толчками тока и снижением напряжения, асинхронным ходом и синхронными качаниями, создаются условия для неправильной работы релейной защиты. Поэтому необходимо тщательно анализировать поведение защит, установленных на транзите, соединяющем включаемые на параллельную работу части энергосистемы.

Применение НАПВ на линиях, несинхронное замыкание которых приводит к длительному асинхронному ходу, нецелесообразно, так как может вызвать расстройство работы потребителей.

Быстродействующие АПВ

После отключения единственной линии, соединяющей две части энергосистемы, угол между напряжениями по концам отключившейся линии увеличивается. Процесс этот, однако, происходит не мгновенно, а в течение некоторого времени, тем большего, чем больше механическая инерция машин в разделившихся частях энергосистемы и чем меньше была мощность, передававшаяся по линии до её отключения.

Для определения изменения угла между напряжениями по концам отключившейся линии за определенный промежуток времени пользуются следующим выражением:

 

(5)

где: РW - мощность, передававшаяся по линии до её отключения, МВт;

РГ, 1 и РГ, 2 - суммарные мощности генераторов в разделившихся частях энергосистемы,

МВт;

TJ - постоянная инерции энергосистемы, с. Обычно для расчетов принимается

равной 8 – 15 с;

t - время, прошедшее от момента отключения линии, с.

 

Принцип БАПВ заключается в том, чтобы после отключения выключателей включить их с обеих сторон повторно возможно быстрее, так, чтобы за время бестоковой паузы угол между напряжениями не успел значительно увеличиться. Включение линии при этом будет происходить без больших толчков тока и длительных качаний.

В России БАПВ применяется только на линиях, оборудованных воздушными выключателями, которые обеспечивают необходимое быстродействие. Для того чтобы БАПВ было успешным, должны быть соблюдено условие (2). Поскольку время отключения воздушных выключателей составляет 0, 2–0, 3 с, деионизация среды будет обеспечена при выполнении БАПВ без выдержки времени или с небольшой выдержкой времени (0, 1–0, 2 с).

БАПВ применяется только в тех случаях, когда линия оснащена быстродействующей защитой, обеспечивающей отключение повреждения без выдержки времени с обоих её концов.

Достоинствами БАПВ являются простота схемы и высокая эффективность действия, что обеспечивает восстановление параллельной работы без длительных качаний и с меньшими толчками тока, чем при НАПВ.

Наиболее целесообразно применять БАПВ на одиночных линиях, связывающих две энергосистемы, когда изменение угла Dd невелико, что будет иметь место при малых отношениях мощности PW, передаваемой по линии, к суммарной мощности генераторов энергосистемы, т.е. на слабонагруженных линиях. Применение БАПВ целесообразно также на межсистемных транзитах 220–750 кВ, когда параллельно им включены более слабые связи 110–220 кВ. В этом случае после отключения основной связи может возникнуть перегрузка слабых связей, что приведет к нарушению устойчивости параллельной работы. при успешном БАПВ основной линии электропередачи нарушение устойчивости будет предотвращено благодаря быстрому включению отключившейся линии и восстановлению нормальной схемы.

 


 

Лекция №8

АПВ с ожиданием синхронизма

 

Принцип действия АПВОС заключается в том, что включение разделившихся частей энергосистемы разрешается, когда напряжения по концам отключившейся линии синхронны или близки к синхронным, а угол между напряжениями не превышает определённого значения. Когда напряжения по концам отключившейся линии синхронны, АПВОС контролирует угол между ними и осуществляет включение линии, если угол невелик и включение не будет сопровождаться большим толчком тока. Когда напряжения несинхронны, АПВОС осуществляет замыкание линии в транзит, если разность частот невелика, и включение не будет сопровождаться большим толчком тока и длительными качаниями.

Если напряжения по концам линии будут несинхронными и разность недопустимо велика, схема АПВОС будет ожидать, пока не восстановится синхронизм между разделившимися частями энергосистемы или когда разность частот будет столь незначительна, что замыкание в транзит не повлечет за собой асинхронного хода и не будет сопровождаться большим толчком тока.

Схема АПВОС приведена на рис. 6.1.

 

Рис. 15.

 

Схема приведенная на рис. 15 отличается от схем АПВ, рассмотренных выше, наличием двух дополнительных реле – контроля напряжения на ЛЭП KSV и реле контроля синхронизма KSS (обмотки реле на рис. не показаны). Устройство АПВ, выполненное по схеме на рис. 15., устанавливается по обоим концам ЛЭП, при этом с одной стороны ЛЭП АПВ разрешается при отсутствии на ЛЭП напряжения (через верхний размыкающий контакт KSV.1, когда включена накладка SX2), а м другой – при наличии на ЛЭП напряжения и при синхронности встречных напряжений (замкнуты нижний замыкающий контакт KSV.2, и контакт KSS.1). Цикл АПВ происходит в следующей последовательности. После отключения ЛЭП сначала подействует устройство АПВ с одной стороны, где контролируется отсутствие напряжения, и включит выключатель. При наличии на ЛЭП устойчивого повреждения выключатель отключится вновь. Устройство АПВ на другой стороне ЛЭП при этом действовать не будет. Если же повреждение будет устранено, ЛЭП останется под напряжением и вступит в действие схема АПВ, установленная на другой стороне ЛЭП. Реле KSV, контролирующие наличие напряжения на ЛЭП, сработает и замкнет контакт KSV.2. Если угол между напряжениями по концам ЛЭП будет невелик, реле контроля синхронизма KSS также замкнет контакт KSS.1, разрешая после истечения заданной выдержки времени включение выключателя, в результате чего ЛЭП будет замкнута с обеих сторон.

В схеме АПВ, показанной на рис. 15., с помощью накладки SX2 изменяются функции АПВ. С той стороны ЛЭП, где осуществляется контроль отсутствия напряжения, накладка SX2 включена. Следует отметить, что с той стороны ЛЭП, где контролируется отсутствие напряжения, последовательно включенные контакты KSV.2 и KSS.1 из работы не выводятся. Благодаря этому предотвращается отказ АПВ при одностороннем отключении ЛЭП.

 


 

ЛЕКЦИЯ №9

Реле контроля синхронизма

Для контроля синхронизма обычно используется реле напряжения типа РН-55, принципиальная схема включения которого показана на рис. 16.

 

Рис. 5.2.

Рис. 5.3.

 

Реле контроля синхронизма имеет две обмотки, к каждой из которых подключается одно из синхронизируемых напряжений. Под действием каждого из напряжений в обмотках реле проходят токи I1 и I2, создающие в магнитопроводе магнитные потоки Ф1 и Ф2. Поскольку, как показано на рис. 17. а), эти потоки направлены встречно, реле реагирует на разность напряжений, подведенных к его обмоткам. Полярность обмоток реле указана точками на рис. 17. б), а полярность напряжений, подведенных к его обмоткам, стрелками на рис. 17. а).

При равных по абсолютным значениям напряжениях разность напряжений в зависимости от угла между ними определяется следующим выражением (рис. 6.4.):

 

 

Рис. 6.4.

 

. (6)

 

Из этого выражения следует, что реле напряжения, замыкающее контакт при снижении разности напряжений до заданной уставки, будет реагировать на угол d между напряжениями.

Реле РН-55 выпускается на разные номинальные напряжения, для чего последовательно с обмотками реле включены разные добавочные резисторы. При номинальных напряжениях на обмотках реле может быть отрегулирован угол срабатывания 20–40° при коэффициенте возврата не меньше 0, 8.

Угол срабатывания реле контроля синхронизма dС.Р., т.е. угол, при котором реле KSS замыкает контакт, разрешая действие АПВ, выбирается с учетом следующих соображений:

а) При наличии обходной связи между частями энергосистемы угол срабатывания, при котором якорь реле подтягивается и реле размыкает контакт, не разрешая включение выключателя, должен быть больше действительного угла dД между двумя напряжениями по концам отключившейся линии:

 

dС.Р.=kHdД, (7)

где: kH - коэффициент надежности, равный 1, 2–1, 3.

 

б) При отсутствии обходной связи, когда после отключения линии разделившиеся части энергосистемы работают несинхронно, устройство АПВ не должно допускать замыкания линии в транзит при большом угле между напряжениями, что будет сопровождаться большим толчком тока и может привести к возникновению асинхронного хода.

На рис. 19. показано, как будет изменяться угол между напряжениями в зависимости от времени при наличии некоторой разности частот.

Рис. 19.

 

При этом контакт реле контроля синхронизма будет замкнут от момента 1, соответствующего возврату реле KSS, dВ, до момента 2, когда реле вновь сработает, dС.Р.

Очевидно, что если время, в течение которого контакт KSS будет замкнут, превысит выдержку времени АПВОС, то будет подан импульс на включение выключателя. При этом угол, соответствующий моменту времени, когда произойдет замыкание контактов выключателя, не должен превышать некоторого максимального допустимого значения dmax.

На основании рис. 19. можно записать следующую пропорцию:

 

 

Учитывая, что t1-2=tАПВ; t2-3=tВКЛ; dВ=kHdС.Р., получаем:

 

 

Для того чтобы замыкание транзита происходило при угле меньше dmax, dС.Р. выбирается по следующему условию:

 

(7)

где: dmax - максимально допустимый угол между напряжениями по концам линии,

принимаемый обычно равным 70–75°;

kВ - коэффициент возврата реле контроля синхронизма, равный 0, 8;

tАПВ - выдержка времени АПВ;

tВКЛ - максимальное время включения данного выключателя;

kН - коэффициент надежности, равный 1, 1.

 

При асинхронном ходе двух разделившихся частей энергосистемы АПВОС разрешается, когда разность частот сравнительно невелика. Допустимая разность частот, при которой разрешается включение, определяется выдержкой времени tАПВ и уставкой срабатывания реле контроля синхронизма на том конце, где линия замыкается в транзит. Чем больше выдержка времени tАПВ и чем меньше уставка срабатывания реле контроля синхронизма dС.Р., тем меньше частота, при которой схема АПВОС допускает включение:

 

(8)

где: fS - максимальная разность частот, Гц, при которой разрешается АПВ.

 

Напряжение срабатывания реле контроля напряжения принимается равным:

 

UC.P.=(0, 5¸ 0, 7)UHOM. (9)

 

Обычно АПВОС применяется на линиях с двусторонним питанием, когда имеется вторая параллельная связь между двумя частями энергосистемы. В этом случае при отключении одной из связей синхронизм между частями энергосистемы не нарушается и отключившаяся линия может быть включена в работу, если повреждение устранится, и угол между напряжениями по концам линии не превысит уставки, заданной на реле контроля синхронизма.

В случае отключения обеих линий связи замыкание транзита может затянуться, пока не будут уравнены частоты в разделившихся частях энергосистемы.

На одиночных линиях с двусторонним питанием АПВОС находят применение в тех случаях, когда вследствие недопустимо больших толчков тока не могут быть использованы более простые устройства НАПВ и БАПВ.

К достоинствам АПВОС по сравнению с НАПВ и БАПВ следует отнести тот факт, что замыкание транзита при этом виде ТАПВ происходит при небольшой разности частот и малых углах. Благодаря этому действие АПВОС не сопровождается асинхронным ходом, вследствие чего, как правило, не приходится принимать дополнительных мер для предотвращения ложных действий РЗ.

В случае нарушения цепей напряжения, подведенного к одной из обмоток реле контроля синхронизма, реле может работать неправильно. Для предотвращения этого в цепь пуска АПВ вводится дополнительный контакт реле напряжения, контролирующего наличие напряжения на шинах подстанции, как показано на рис. 20. При исчезновении напряжения, подаваемого к реле контроля синхронизма от трансформатора напряжения, установленного на шинах подстанции, реле KSV2 разомкнет свой контакт, предотвращая пуск АПВ.

 

ЛЕКЦИЯ №10

Ускоренное ТАПВ

 

Ускоренным ТАПВ (УТАПВ) называется вид АПВ, пуск которого осуществляется при срабатывании быстродействующих РЗ по схеме, аналогичной для пуска БАПВ. При этом выдержка времени УТАПВ составляет 0, 1–0, 3 с. В схеме УТАПВ сохраняются цепи контроля напряжения на ЛЭП и синхронизма. Включение ЛЭП происходит с одного конца с контролем отсутствия напряжения, а с другого – с контролем синхронизма, аналогично тому, как действует рассмотренное выше АПВОС.

 

 

Рис. 21.

 

АПВ с улавливанием синхронизма

 

Для повышения эффективности применения АПОС на одиночных линиях с двусторонним питанием разработаны более сложные схемы, чем приведенная на рис. 15. обеспечивающие включение выключателя с разными углами опережения в зависимости от разности частот. (см. рис. 21.) Благодаря этому ускоряется включение линии.

 

Устройства отбора напряжения с линии для цепей АПВ

 

Реле KSS (см. рис. 16.) подключено к двум трансформаторам напряжения, один из которых установлен на шинах подстанции, а другой – на линии. Поскольку на линиях напряжением 220 кВ и ниже трансформаторы напряжения обычно не устанавливают, для измерения напряжения линии используют специальные схемы отбора напряжения, более простые и дешевые, чем электромагнитные трансформаторы напряжения.

В качестве емкостных делителей для устройств отбора напряжения от линии электропередачи используются конденсаторы связи, изоляторы вводов масляных выключателей, силовых трансформаторов и трансформаторов тока, колонки опорных и гирлянды подвесных изоляторов.

 

Однофазное АПВ

 

Общие сведения

 

Опыт эксплуатации воздушных сетей высокого напряжения, работающих с заземленной нейтралью, показывает, что доля однофазных КЗ на ЛЭП весьма высока. Очевидно, что при однофазных КЗ достаточно отключить одну поврежденную фазу с обеих сторон линии и затем автоматически включить её повторно. При этом две другие неповрежденные фазы линии всё время остаются включенными. Этот принцип и положен в основу выполнения ОАПВ.

Основными преимуществами ОАПВ по сравнению с ТАПВ являются:

1. сохранение в цикле ОАПВ по двум фазам, оставшемся в работе, связи между двумя частями энергосистемы (включение при этом происходит без толчков);

2. возможность выполнения АПВ на однофазных выключателях любого типа, как быстродействующих, так и медленнодействующих.

К основным недостаткам ОАПВ можно отнести:

1. Усложнение схемы АПВ за счет введения специальных устройств, выбирающих поврежденную фазу линии, - избирателей и дополнительных блокировок;

2. усложнение, загрубление и замедление РЗ на данной линии, а также и в прилежащей сети, для того, чтобы предотвратить её ложное срабатывание от токов и напряжений нулевой и обратной последовательностей, которые появляются в цикле ОАПВ;

3. вредное влияние несимметрии при работе линии с двумя фазами на генераторы электростанций, а также на линии телефонной связи;

4. блокировка ОАПВ (по принципу действия) при междуфазных КЗ.

В некоторых случаях выполняются комбинированные устройства АПВ, которые при однофазных КЗ действуют как ОАПВ, а при междуфазных – как ТАПВ.

В России ОАПВ получило распространение главным образом на одноцепных или двухцепных ЛЭП напряжением 330–750 кВ. Успешность действия ОАПВ такая же, как и ТАПВ, и составляет от 50 до 80% для ЛЭП разного напряжения.

 


 

ЛЕКЦИЯ №11

 

ОАПВ для ЛЭП с двусторонним питанием

 

На ЛЭП 330–500 кВ применяется устройство типа АПВ-503, которое совместимо с РЗ, установленными на ЛЭП, обеспечивающие:

1. при однофазных КЗ на ЛЭП, отключаемых быстродействующей РЗ, – отключение только поврежденной фазы и её однократное АПВ;

2. при включении отключившейся фазы на устойчивое однофазное КЗ – отключение трех фаз линии без их повторного включения;

3. при междуфазных КЗ на линии – отключение трех фаз линии и их повторное включение;

4. при отключении трех фаз неповрежденной линии вследствие ложного срабатывания РЗ или автоматики – однократное ТАПВ линии.

Таким образом, рассматриваемое устройство является комбинированным АПВ, обеспечивающим отключение и последующие включение одной или трех фаз в зависимости от вида КЗ.

В схеме ОАПВ можно выделить следующие функциональные блоки:

· избиратели поврежденных фаз;

· цепи действия на отключение поврежденных фаз;

· реле времени и цепи включения при действии ОАПВ;

· цепи перевода действия защит на отключение трех фаз;

· цепи защиты линии в неполнофазном режиме работы.

 

Избиратели

 

Избиратели определяют вид КЗ и поврежденные фазы. Наиболее просто возникновение КЗ на той или иной фазе можно определить с помощью токовых реле, срабатывающих при увеличении тока в поврежденной фазе. Однако на длинных сильно нагруженных линиях токи нагрузки могут быть соизмеримыми или большими токов КЗ при повреждении в конце линии, что не позволяет использовать токовые реле для определения поврежденной фазы.

 

 

Рис. 22.

 

В качестве избирателей поврежденной фазы в устройствах типа АПВ–503 используются реле сопротивления (РС), включенные на фазные напряжения и сумму фазных токов и токов нулевой последовательности. Уставки реле сопротивления выбираются таким образом, чтобы они срабатывали только в случае повреждения данной фазы. При однофазном КЗ сработает только один избиратель, который определит поврежденную фазу.

Для лучшей отстройки от нагрузки и обеспечения необходимой чувствительности при КЗ в конце защищаемой линии избирательный орган каждой фазы линии выполняется в виде двух РС, характеристики которых представляют собой две пересекающиеся окружности (рис. 22.).

 

АПВ шин

 

Выше уже говорилось о неустойчивости большинства повреждений на шинах, что позволяет успешно применять АПВ шин.

Для п/ст с односторонним питанием, отключение повреждений на шинах которых обеспечивается защитами, установленными на противоположных концах питающих линий или на трансформаторах, повторная подача напряжения на шины обеспечивается действием АПВ питающих элементов (линий или трансформаторов).

При наличии на п/ст специальной защиты шин повторное включение шин также может быть осуществлено с помощью АПВ выключателей питающих присоединений. Схема АПВ при этом выполняется с пуском от несоответствия положений выключателя и ключа управления (реле фиксации). В этом случае при срабатывании защиты шин не должно осуществляться блокирование действия АПВ линии.

При наличии на п/ст не одной, а нескольких питающих линий целесообразно осуществлять АПВ нескольких или всех линий, отключающихся при срабатывании защиты шин. С этой целью при срабатывании защиты шин запускаются АПВ всех питающих линий. В случае успешного АПВ первой линии поочередно включаются выключатели других линий. Если первая линия включится на устойчивое КЗ, снова сработает защита шин. При этом блокируется действие АПВ других линий, и их выключатели не включатся, благодаря чему обеспечивается однократность АПВ шин.

 

АПВ трансформаторов

 

Частным случаем АПВ шин является АПВ трансформаторов. Наиболее целесообразно применение АПВ на одиночных трансформаторах, отключение которых может привести к аварии. АПВ трансформаторов применяется и на параллельно работающих трансформаторах, устанавливаемых на п/ст без обслуживающего персонала, для максимальной автоматизации восстановления нормального режима работы. Как правило, не допускается действие АПВ трансформатора при внутренних повреждениях в трансформаторе, когда срабатывает газовая или дифференциальная защита.

 

АПВ электродвигателей

 

АПВ электродвигателей применяется для обеспечения их самозапуска после восстановления питания.

АПВ электродвигателей применяется в установках 3–10 кВ в тех случаях, когда для обеспечения самозапуска наиболее ответственных электродвигателей приходится отключить кроме неответственных также часть ответственных электродвигателей. При этом целесообразно применить схему, осуществляющую АПВ отключившихся электродвигателей после восстановления напряжения.

 

 


 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 3586; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.098 с.)
Главная | Случайная страница | Обратная связь