Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ГЛАВА 1. РАЗВИТИЕ АВТОМАТИКИ



ЛЕКЦИИ

ГЛАВА 1. РАЗВИТИЕ АВТОМАТИКИ

ЛЕКЦИЯ №1

 

Исторический путь развития автоматики

Со времён глубокой древности человечество занималось созданием автоматических устройств, предназначенных для облегчения быта, защиты от окружающих опасностей и развлечений. Ещё Герон Александрийский в одной из первых книг по технике описал устройство, в котором исполнялись различные действия автоматами - куклами. На рубеже нашей эры арабы снабдили водяные часы поплавковым регулятором уровня. В средние века в России был сконструирован автомат в виде фигуры Петра I, встававшей с трона при входе кого-нибудь в комнату.

В 1675 г. Гюйгенс встроил в механические часы маятниковый регулятор хода.

В это же время применяются центробежные маятниковые уравнители хода водяных мельниц.

Быстрое развитие автоматики началось в эпоху первой промышленной революции в Европе на рубеже XVIII и XIX веков. В России в г. Барнауле Ползуновым И.И. в 1765 г. сконструирован первый промышленный регулятор – автоматический поплавковый регулятор питания котла паровой машины. Английский механик Д. Уатт в 1784 г. получил патент на центробежный регулятор скорости паровой машины. Тем самым был открыт фундаментальный принцип управления – принцип обратной связи (принцип Ползунова-Уатта).

В 1868 г. английский физик Д. Максвелл в работе “О регуляторах” впервые поставил и рассмотрел математическую задачу об устойчивости систем регулирования, где рассмотрены переход к исследованию малых отклонений и линеаризация дифференциальных уравнений, совместное рассмотрение уравнений регулятора и машины, формулировка условий устойчивости линейных систем третьего порядка и постановка перед математиками задачи о нахождении условий устойчивости для уравнений произвольного порядка, в результате чего появилась работа Рауса (критерий Рауса).

В 1876 г. в трудах Парижской академии И.А. Вышнеградский опубликовал статьи “Об общей теории регуляторов” и “О регуляторах прямого действия”. В этих работах содержались не только основные этапы работы Максвелла: системный подход, линеаризация, исследование устойчивости, но и делался существенный шаг вперёд при рассмотрении основных показателей качества процесса регулирования: монотонность, колебательность, апериодичность. Работами И.А. Вышнеградского было вскрыто и объяснено знаменитое противоречие между точностью и устойчивостью регулирования: при уменьшении статической ошибки регулирования ниже некоторого критического значения система теряет устойчивость.

Дальнейшее развитие техники регулирования пошло по пути поиска способов преодоления этого противоречия. Переход от регуляторов прямого действия, перемещающих регулирующие органы непосредственно за счёт энергии измерительного органа, к регуляторам непрямого действия, осуществляющим такие перемещения через силовые усилители, с одной стороны, осложнило проблему устойчивости, введя в контур дополнительные инерционные звенья, с другой стороны, сделало схемы регуляторов более гибкими, дав возможность введения в различные точки схемы дополнительных связей и корректирующих звеньев.

В 1830 г. Понселе предложил построить регулятор, действующий по возмущению. Принцип Понселе (принцип компенсации возмущающего воздействия) – второй фундаментальный принцип управления.

В 1845 г. братья Сименсы предложили воздействовать на регулируемый объект в функции производной отклонения регулируемой величины (принцип управления по производным).

В 1892 г. вышла работа знаменитого русского учёного А.М. Ляпунова ”Общая задача об устойчивости движения”. Теория устойчивости движения, созданная А.М. Ляпуновым, имеет исключительное значение для многих прикладных дисциплин.

К началу XX в. теория регулирования выходит из прикладной механики и формируется в общетехническую дисциплину.

В начале ХХ в. выходят работы словацкого учёного А. Стодолы по регулированию гидротурбин и книга русского учёного Н.Е. Жуковского “Регулирование силовых машин”.

В 1932 г. американский учёный Х. Найквист предложил критерий устойчивости по частотным характеристикам системы в разомкнутом состоянии, а в 1936 г. А.В. Михайлов показывает преимущества применения частотных методов, предложив свой критерий устойчивости, не требующий предварительного размыкания цепи.

С введением частотных методов начинается новый этап ускоренного развития теории управления. Американские учёные Г. Боде и Л. Маккол в 1946 г., русский учёный В.В. Солодовников в 1948 г. разработали метод логарифмических частотных характеристик (ЛЧХ). Если ранее синтез систем осуществлялся путём интуиции и изобретательства, то метод ЛЧХ открыл новые возможности для исследования качества регулирования и создания теории синтеза структур и параметров математическими методами.

В 1940-1950 годы сформировалась по существу новая современная теория автоматического управления: в области устойчивости разработаны методы, существенно облегчающие применение различных критериев устойчивости, введены различные количественные оценки показателей качества процессов регулирования (время регулирования, перерегулирование, колебательность, выброс, степень устойчивости).

К.Ф. Теодорчиком, Г.А. Бендриковым, У. Ивенсом, Дж. Тракселом разработан метод корневого годографа. П.С. Стрелков и Э.Г. Удерман получили важные результаты по детальному изучению влияния на переходный процесс расположения нулей и полюсов передаточной функции, в частности путём выделения доминирующих полюсов с целью упрощения исследования. Были развиты различные интегральные оценки качества с помощью определённых интегралов с бесконечным верхним пределом.

Впервые в 1940 г. В.В. Солодовниковым предложен метод исследования регуляторов путём воспроизведения условий работы системы на электронных моделях.

Значительный вклад в развитие теории управления внесли А.А. Красовский, А.А. Фельдбаум, Г. Джеймс, Н. Никольс, Р. Филипс, И.Н. Вознесенский, Г.В. Щипанов, Б.Н. Петров, Е.П. Попов, В.А. Бесекерский, А.В. Фатеев, А.А. Вавилов, С.М. Фёдоров, Я.З. Цыпкин.

ГЛАВА 2. АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ

ЛЕКЦИЯ №2

Назначение АПВ

Значительная часть коротких замыканий (КЗ) на воздушных ЛЭП, вызванных перекрытием изоляции, схлестыванием проводов и др. причинами, при достаточно быстром отключении повреждения релейной защитой самоустраняется. Такие самоустраняющиеся повреждения принято называть неустойчивыми.

Доля неустойчивых повреждений согласно статистическим исследованиям составляет 50-90%.

Обычно, при ликвидации аварии оперативный персонал производит опробование линии путём обратного включения под напряжение. Эта операция называется повторным включением.

Линия, на которой произошло неустойчивое повреждение, при повторном включении остаётся в работе. Поэтому повторные включения при неустойчивых повреждениях называют успешными.

При повторном включении линии, на которой произошло устойчивое повреждение, вновь возникает КЗ, и она вновь отключается защитой. Поэтому повторные включения линий на устойчивые повреждения называют неуспешными.

 

Нормальный режим работы ЛЭП
КЗ
Отключение ЛЭП РЗ
Повторное включение
Успешное повторное включение
Неуспешное повторное включение
КЗ
Отключение ЛЭП РЗ

 


Рис.2.1

Для ускорения повторного включения линий и уменьшения времени перерыва электроснабжения потребителей используются специальные устройства автоматического повторного включения (АПВ).

Согласно Правилам устройств электроустановок (ПУЭ) обязательно применение АПВ на всех воздушных и смешанных ЛЭП напряжением выше 1 кВ. Успешность действия АПВ составляет 50-90%. АПВ восстанавливает нормальную схему и при ложном действии релейной защиты (РЗ).

Неустойчивые КЗ часто бывают и на шинах подстанций (п/ст). Поэтому на п/ст оборудованных быстродействующей защитой, также применяется АПВ.

Устройствами АПВ (УАПВ) оснащаются также все одиночно работающие трансформаторы мощностью 1000 кВА и более и трансформаторы меньшей мощности, питающие ответственную нагрузку. АПВ трансформаторов должно действовать только, если трансформатор был отключен максимальной токовой защитой. Повторное включение при повреждении самого трансформатора, когда он отключен защитами от внутренних повреждений, не производится. Успешность действия АПВ шин и трансформаторов составляет 70-90%.

АПВ используется и на кабельных линиях напряжением 6-10 кВ. Несмотря на то, что повреждения кабелей бывают, как правило, устойчивыми, успешность действия АПВ составляет 40-60%. Это объясняется тем, что АПВ восстанавливает питание потребителей при неустойчивых повреждениях на шинах, при отключении линий вследствие перегрузки, при ложных и неселективных действиях защиты.

Применение АПВ позволяет упростить схемы РЗ и ускорить отключение КЗ в сетях, что является положительным качеством этого вида автоматики.

 

Классификация АПВ. Основные требования к схемам АПВ

 

Разновидности АПВ  
     
ТАПВ ОАПВ КАПВ
     
Простые    
БАПВ    
АПВНН    
АПВОС    
АПВУС    

 

Рис. 2.2

 

ТАПВ - трехфазные АПВ, осуществляют включение трех фаз выключателя, после

их отключения РЗ;

ОАПВ - однофазные АПВ, осуществляют включение одной фазы выключателя,

отключенной РЗ при однофазном КЗ;

КАПВ - комбинированные АПВ, осуществляют включение трех фаз (при

междуфазных повреждениях) или одной фазы (при однофазных КЗ);

БАПВ - быстродействующие АПВ;

АПВНН - АПВ с проверкой наличия напряжения;

АПВОС - АПВ с ожиданием синхронизма;

АПВУС - АПВ с улавливанием синхронизма.

 

По виду оборудования, на которое действием АПВ повторно подается напряжение, различают:

 

Виды АПВ  
     
ЛЭП Шин Трансформаторов

 

Рис. 3.

 

  Кратность АПВ  
     
Однократные АПВ   Многократные АПВ

 

Рис. 4.

 

  Исполнение АПВ  
     
Электрические АПВ   Механические АПВ

 

Рис. 2.3

 

Электрические АПВ - АПВ, осуществляемые с помощью специальных релейных

схем;

Механические АПВ - АПВ, встроенные в грузовые или пружинные приводы.

 

Основные требования к схемам АПВ:

 

1. Схемы АПВ должны приходить в действие при аварийном отключении выключателя находившегося в работе. В некоторых случаях схемы АПВ должны отвечать дополнительным требованиям, при выполнении которых разрешается пуск АПВ (наличие или отсутствие напряжения, наличие синхронизма, восстановление частоты и др.);

2. Схемы АПВ не должны приходить в действие при оперативном отключении выключателя персоналом, а также когда выключатель отключается РЗ сразу после его включения персоналом ( включение выключателя на КЗ ). Схемы АПВ должны предусматривать возможность запрета действия АПВ при срабатывании отдельных защит (дифференциальная или газовая защита трансформаторов);

3. Схемы АПВ должны обеспечивать определённое количество повторных включений, т.е. действовать с заданной кратностью. (В России наибольшее распространение получили схемы однократного действия, применяются 2-х и 3-х кратного действия).

4. Время действия АПВ должно быть минимально возможным, для быстрого восстановления нормального режима работы. (На линиях с односторонним питанием 0, 3–0, 5 с.) Вместе с тем для самоустранения таких повреждений как касание проводов передвижными механизмами, АПВ должна иметь выдержки времени порядка нескольких секунд;

5. Схемы АПВ должны обеспечивать автоматический возврат в исходное положение готовности к новому действию после включения в работу выключателя, на который действует АПВ.


 

ЛЕКЦИЯ №3

ЛЕКЦИЯ №4

ЛЕКЦИЯ №5

Ускорение защиты до АПВ

 

 

 

Ускорение защиты до АПВ позволяет ускорить отключение КЗ и обеспечить селективную ликвидацию повреждений. В сети, показанной на рис., максимальная токовая защита МТЗ1, установленная на линии w1, по условию селективности должна иметь выдержку времени больше, чем МТЗ2 и МТЗ3 линий w2 и w3.

Одним из способов, обеспечивающих быстрое отключение повреждений на линии w1 без применения сложных защит, является ускорение МТЗ этой линии до АПВ. С этой целью защита МТЗ1 выполняется так, что при возникновении КЗ она первый раз действует без выдержки времени независимо от того, на какой из линий произошло КЗ, а после АПВ действует с нормальной выдержкой времени.

В случае КЗ на линии w1 срабатывает защита МТЗ1 по цепи ускорения и отключает эту линию без выдержки времени. После АПВ, если повреждение устранилось, линия остается в работе; если же повреждение оказалось устойчивым, линия вновь отключится, но уже с выдержкой времени.

При КЗ на линии w2 происходит неселективное отключение линии w1 защитой МТЗ1 по цепи ускорения без выдержки времени. Затем линия w1 действием АПВ включается обратно. Если повреждение на линии w2 оказалось устойчивым, то эта линия отключается своей защитой МТЗ2, а линия w1 остается в работе, так как после АПВ защита МТЗ1 действует с нормальной селективной с МТЗ2 выдержкой времени.

Ускорение защиты до АПВ выполняется аналогично ускорению после АПВ. Пуск реле KL2 при осуществлении защиты до АПВ осуществляется при срабатывании выходного реле АПВ (см. рис. 12.). У реле KL2 при этом используется размыкающий контакт. В схеме на рис. 12. цепь ускорения будет замкнута до АПВ и разомкнута при действии АПВ на включение выключателя. Реле KL2 при этом будет удерживаться в сработавшем положении до тех пор, пока не отключится КЗ и не разомкнуться контакты реле защиты.

 

 

Рис. 12.

 

ЛЕКЦИЯ №6

Двукратное АПВ

Применение двукратного АПВ позволяет повысить эффективность этого вида автоматики. Как показывает опыт эксплуатации, успешность действия при втором включении составляет 10–20%, что повышает общий процент успешных действий АПВ до 75–95%. Двукратное АПВ применяют, как правило, на линиях с односторонним питанием и на головных участках кольцевых сетей, где возможна работа в режиме одностороннего питания.

В схемах АПВ двукратного действия применяется комплектное устройство типа РПВ-258. В отличие от устройства РПВ-58, рассмотренного выше, РПВ-258 (см. рис. 13.) содержит два конденсатора С1 и С2 и реле времени КТ с тремя контактами: КТ.1 размыкающимся без выдержки времени, и двумя контактами, замыкающимися с выдержками времени (временно замыкающий – проскальзывающий КТ.2 и упорныйКТ.3).

 

 

Рис. 5.1

 

Пуск схемы двукратного АПВ осуществляется так же, как и схемы однократного АПВ, контактами реле KQT, которое срабатывает при отключении выключателя и подает минус на обмотку реле времени АПВ. Спустя установленную выдержку времени замкнется проскальзывающий контакт реле времени КТ.2 и создаст цепь для разряда конденсатора С1 на обмотку промежуточного реле KL1, которое, сработав, включит выключатель.

В случае успешного АПВ работа схемы прекратится. Если же АПВ было неуспешным, и выключатель отключился вновь, опять сработает KQT и запустит реле KT. В этом случае при замыкании контакта КТ.2 промежуточное реле не сработает, так как конденсатор С1 к этому времени не успеет зарядиться. Реле времени продолжая работать, замкнет контакт КТ.3; при этом под действием разряда конденсатора С2 вновь сработает реле KL1 и произойдет второй цикл АПВ.

Для предотвращения срабатывания АПВ в случае отключения выключателя после включения его ключом управления на КЗ в схеме осуществляется разряд конденсаторов С1 и С2 через резисторы R5 и R3. Аналогично осуществляется запрет АПВ контактами реле защит.

Выдержка времени первого цикла АПВ определяется по выражениям (1) и (2) так же, как и для АПВ однократного действия. Второй цикл согласно ПУЭ должен происходит спустя 10–20 с. после вторичного отключения выключателя. Такая большая выдержка времени АПВ во втором цикле диктуется необходимостью подготовки выключателя к отключению третьего КЗ в случае включения на устойчивое повреждение. За это время из гасительной камеры удаляются разложившиеся и обугленные частицы, камера вновь заполняется маслом, и отключающая способность выключателя восстанавливается. В комплекте РПВ-258 время готовности к последующим действиям после второго цикла составляет 60–100 с.

 

ЛЕКЦИЯ №7

Несинхронное АПВ

НАПВ является наиболее простым устройством, допускающим включение разделившихся частей энергосистемы независимо от разности их напряжений. Схема АПВ при этом выполняется, как описано выше, без каких-либо дополнительных блокировок. Для предотвращения включения с обоих сторон концов линии на устойчивое КЗ, а также для обеспечения при НАПВ правильной работы РЗ АПВ с одного конца линии выполняется с контролем наличия напряжения на линии. Включение линии при успешном НАПВ сопровождается сравнительно большими толчками тока и активной мощности, а также более или менее длительными качаниями. На основании теоретических и экспериментальных исследований предложены определенные нормы, определяющие допустимость применения НАПВ. (Определяется кратность периодической составляющей тока КЗ в предполагаемом месте установки НАПВ и сравнивается с нормативной).

Преимуществами схем НАПВ, обусловившими на определенном этапе их широкое распространение в энергосистемах России, являются их простота и возможность применения на выключателях всех типов. Обычно после НАПВ происходит успешная ресинхронизация двух частей энергосистемы или электростанции с энергосистемой. Вместе с тем следует иметь в виду, что поскольку НАПВ сопровождается большими толчками тока и снижением напряжения, асинхронным ходом и синхронными качаниями, создаются условия для неправильной работы релейной защиты. Поэтому необходимо тщательно анализировать поведение защит, установленных на транзите, соединяющем включаемые на параллельную работу части энергосистемы.

Применение НАПВ на линиях, несинхронное замыкание которых приводит к длительному асинхронному ходу, нецелесообразно, так как может вызвать расстройство работы потребителей.

Быстродействующие АПВ

После отключения единственной линии, соединяющей две части энергосистемы, угол между напряжениями по концам отключившейся линии увеличивается. Процесс этот, однако, происходит не мгновенно, а в течение некоторого времени, тем большего, чем больше механическая инерция машин в разделившихся частях энергосистемы и чем меньше была мощность, передававшаяся по линии до её отключения.

Для определения изменения угла между напряжениями по концам отключившейся линии за определенный промежуток времени пользуются следующим выражением:

 

(5)

где: РW - мощность, передававшаяся по линии до её отключения, МВт;

РГ, 1 и РГ, 2 - суммарные мощности генераторов в разделившихся частях энергосистемы,

МВт;

TJ - постоянная инерции энергосистемы, с. Обычно для расчетов принимается

равной 8 – 15 с;

t - время, прошедшее от момента отключения линии, с.

 

Принцип БАПВ заключается в том, чтобы после отключения выключателей включить их с обеих сторон повторно возможно быстрее, так, чтобы за время бестоковой паузы угол между напряжениями не успел значительно увеличиться. Включение линии при этом будет происходить без больших толчков тока и длительных качаний.

В России БАПВ применяется только на линиях, оборудованных воздушными выключателями, которые обеспечивают необходимое быстродействие. Для того чтобы БАПВ было успешным, должны быть соблюдено условие (2). Поскольку время отключения воздушных выключателей составляет 0, 2–0, 3 с, деионизация среды будет обеспечена при выполнении БАПВ без выдержки времени или с небольшой выдержкой времени (0, 1–0, 2 с).

БАПВ применяется только в тех случаях, когда линия оснащена быстродействующей защитой, обеспечивающей отключение повреждения без выдержки времени с обоих её концов.

Достоинствами БАПВ являются простота схемы и высокая эффективность действия, что обеспечивает восстановление параллельной работы без длительных качаний и с меньшими толчками тока, чем при НАПВ.

Наиболее целесообразно применять БАПВ на одиночных линиях, связывающих две энергосистемы, когда изменение угла Dd невелико, что будет иметь место при малых отношениях мощности PW, передаваемой по линии, к суммарной мощности генераторов энергосистемы, т.е. на слабонагруженных линиях. Применение БАПВ целесообразно также на межсистемных транзитах 220–750 кВ, когда параллельно им включены более слабые связи 110–220 кВ. В этом случае после отключения основной связи может возникнуть перегрузка слабых связей, что приведет к нарушению устойчивости параллельной работы. при успешном БАПВ основной линии электропередачи нарушение устойчивости будет предотвращено благодаря быстрому включению отключившейся линии и восстановлению нормальной схемы.

 


 

Лекция №8

АПВ с ожиданием синхронизма

 

Принцип действия АПВОС заключается в том, что включение разделившихся частей энергосистемы разрешается, когда напряжения по концам отключившейся линии синхронны или близки к синхронным, а угол между напряжениями не превышает определённого значения. Когда напряжения по концам отключившейся линии синхронны, АПВОС контролирует угол между ними и осуществляет включение линии, если угол невелик и включение не будет сопровождаться большим толчком тока. Когда напряжения несинхронны, АПВОС осуществляет замыкание линии в транзит, если разность частот невелика, и включение не будет сопровождаться большим толчком тока и длительными качаниями.

Если напряжения по концам линии будут несинхронными и разность недопустимо велика, схема АПВОС будет ожидать, пока не восстановится синхронизм между разделившимися частями энергосистемы или когда разность частот будет столь незначительна, что замыкание в транзит не повлечет за собой асинхронного хода и не будет сопровождаться большим толчком тока.

Схема АПВОС приведена на рис. 6.1.

 

Рис. 15.

 

Схема приведенная на рис. 15 отличается от схем АПВ, рассмотренных выше, наличием двух дополнительных реле – контроля напряжения на ЛЭП KSV и реле контроля синхронизма KSS (обмотки реле на рис. не показаны). Устройство АПВ, выполненное по схеме на рис. 15., устанавливается по обоим концам ЛЭП, при этом с одной стороны ЛЭП АПВ разрешается при отсутствии на ЛЭП напряжения (через верхний размыкающий контакт KSV.1, когда включена накладка SX2), а м другой – при наличии на ЛЭП напряжения и при синхронности встречных напряжений (замкнуты нижний замыкающий контакт KSV.2, и контакт KSS.1). Цикл АПВ происходит в следующей последовательности. После отключения ЛЭП сначала подействует устройство АПВ с одной стороны, где контролируется отсутствие напряжения, и включит выключатель. При наличии на ЛЭП устойчивого повреждения выключатель отключится вновь. Устройство АПВ на другой стороне ЛЭП при этом действовать не будет. Если же повреждение будет устранено, ЛЭП останется под напряжением и вступит в действие схема АПВ, установленная на другой стороне ЛЭП. Реле KSV, контролирующие наличие напряжения на ЛЭП, сработает и замкнет контакт KSV.2. Если угол между напряжениями по концам ЛЭП будет невелик, реле контроля синхронизма KSS также замкнет контакт KSS.1, разрешая после истечения заданной выдержки времени включение выключателя, в результате чего ЛЭП будет замкнута с обеих сторон.

В схеме АПВ, показанной на рис. 15., с помощью накладки SX2 изменяются функции АПВ. С той стороны ЛЭП, где осуществляется контроль отсутствия напряжения, накладка SX2 включена. Следует отметить, что с той стороны ЛЭП, где контролируется отсутствие напряжения, последовательно включенные контакты KSV.2 и KSS.1 из работы не выводятся. Благодаря этому предотвращается отказ АПВ при одностороннем отключении ЛЭП.

 


 

ЛЕКЦИЯ №9

Реле контроля синхронизма

Для контроля синхронизма обычно используется реле напряжения типа РН-55, принципиальная схема включения которого показана на рис. 16.

 

Рис. 5.2.

Рис. 5.3.

 

Реле контроля синхронизма имеет две обмотки, к каждой из которых подключается одно из синхронизируемых напряжений. Под действием каждого из напряжений в обмотках реле проходят токи I1 и I2, создающие в магнитопроводе магнитные потоки Ф1 и Ф2. Поскольку, как показано на рис. 17. а), эти потоки направлены встречно, реле реагирует на разность напряжений, подведенных к его обмоткам. Полярность обмоток реле указана точками на рис. 17. б), а полярность напряжений, подведенных к его обмоткам, стрелками на рис. 17. а).

При равных по абсолютным значениям напряжениях разность напряжений в зависимости от угла между ними определяется следующим выражением (рис. 6.4.):

 

 

Рис. 6.4.

 

. (6)

 

Из этого выражения следует, что реле напряжения, замыкающее контакт при снижении разности напряжений до заданной уставки, будет реагировать на угол d между напряжениями.

Реле РН-55 выпускается на разные номинальные напряжения, для чего последовательно с обмотками реле включены разные добавочные резисторы. При номинальных напряжениях на обмотках реле может быть отрегулирован угол срабатывания 20–40° при коэффициенте возврата не меньше 0, 8.

Угол срабатывания реле контроля синхронизма dС.Р., т.е. угол, при котором реле KSS замыкает контакт, разрешая действие АПВ, выбирается с учетом следующих соображений:

а) При наличии обходной связи между частями энергосистемы угол срабатывания, при котором якорь реле подтягивается и реле размыкает контакт, не разрешая включение выключателя, должен быть больше действительного угла dД между двумя напряжениями по концам отключившейся линии:

 

dС.Р.=kHdД, (7)

где: kH - коэффициент надежности, равный 1, 2–1, 3.

 

б) При отсутствии обходной связи, когда после отключения линии разделившиеся части энергосистемы работают несинхронно, устройство АПВ не должно допускать замыкания линии в транзит при большом угле между напряжениями, что будет сопровождаться большим толчком тока и может привести к возникновению асинхронного хода.

На рис. 19. показано, как будет изменяться угол между напряжениями в зависимости от времени при наличии некоторой разности частот.

Рис. 19.

 

При этом контакт реле контроля синхронизма будет замкнут от момента 1, соответствующего возврату реле KSS, dВ, до момента 2, когда реле вновь сработает, dС.Р.

Очевидно, что если время, в течение которого контакт KSS будет замкнут, превысит выдержку времени АПВОС, то будет подан импульс на включение выключателя. При этом угол, соответствующий моменту времени, когда произойдет замыкание контактов выключателя, не должен превышать некоторого максимального допустимого значения dmax.

На основании рис. 19. можно записать следующую пропорцию:

 

 

Учитывая, что t1-2=tАПВ; t2-3=tВКЛ; dВ=kHdС.Р., получаем:

 

 

Для того чтобы замыкание транзита происходило при угле меньше dmax, dС.Р. выбирается по следующему условию:

 

(7)

где: dmax - максимально допустимый угол между напряжениями по концам линии,

принимаемый обычно равным 70–75°;

kВ - коэффициент возврата реле контроля синхронизма, равный 0, 8;

tАПВ - выдержка времени АПВ;

tВКЛ - максимальное время включения данного выключателя;

kН - коэффициент надежности, равный 1, 1.

 

При асинхронном ходе двух разделившихся частей энергосистемы АПВОС разрешается, когда разность частот сравнительно невелика. Допустимая разность частот, при которой разрешается включение, определяется выдержкой времени tАПВ и уставкой срабатывания реле контроля синхронизма на том конце, где линия замыкается в транзит. Чем больше выдержка времени tАПВ и чем меньше уставка срабатывания реле контроля синхронизма dС.Р., тем меньше частота, при которой схема АПВОС допускает включение:

 

(8)

где: fS - максимальная разность частот, Гц, при которой разрешается АПВ.

 

Напряжение срабатывания реле контроля напряжения принимается равным:

 

UC.P.=(0, 5¸ 0, 7)UHOM. (9)

 

Обычно АПВОС применяется на линиях с двусторонним питанием, когда имеется вторая параллельная связь между двумя частями энергосистемы. В этом случае при отключении одной из связей синхронизм между частями энергосистемы не нарушается и отключившаяся линия может быть включена в работу, если повреждение устранится, и угол между напряжениями по концам линии не превысит уставки, заданной на реле контроля синхронизма.

В случае отключения обеих линий связи замыкание транзита может затянуться, пока не будут уравнены частоты в разделившихся частях энергосистемы.

На одиночных линиях с двусторонним питанием АПВОС находят применение в тех случаях, когда вследствие недопустимо больших толчков тока не могут быть использованы более простые устройства НАПВ и БАПВ.

К достоинствам АПВОС по сравнению с НАПВ и БАПВ следует отнести тот факт, что замыкание транзита при этом виде ТАПВ происходит при небольшой разности частот и малых углах. Благодаря этому действие АПВОС не сопровождается асинхронным ходом, вследствие чего, как правило, не приходится принимать дополнительных мер для предотвращения ложных действий РЗ.

В случае нарушения цепей напряжения, подведенного к одной из обмоток реле контроля синхронизма, реле может работать неправильно. Для предотвращения этого в цепь пуска АПВ вводится дополнительный контакт реле напряжения, контролирующего наличие напряжения на шинах подстанции, как показано на рис. 20. При исчезновении напряжения, подаваемого к реле контроля синхронизма от трансформатора напряжения, установленного на шинах подстанции, реле KSV2 разомкнет свой контакт, предотвращая пуск АПВ.

 

ЛЕКЦИЯ №10

Ускоренное ТАПВ

 

Ускоренным ТАПВ (УТАПВ) называется вид АПВ, пуск которого осуществляется при срабатывании быстродействующих РЗ по схеме, аналогичной для пуска БАПВ. При этом выдержка времени УТАПВ составляет 0, 1–0, 3 с. В схеме УТАПВ сохраняются цепи контроля напряжения на ЛЭП и синхронизма. Включение ЛЭП происходит с одного конца с контролем отсутствия напряжения, а с другого – с контролем синхронизма, аналогично тому, как действует рассмотренное выше АПВОС.

 

 

Рис. 21.

 

АПВ с улавливанием синхронизма

 

Для повышения эффективности применения АПОС на одиночных линиях с двусторонним питанием разработаны более сложные схемы, чем приведенная на рис. 15. обеспечивающие включение выключателя с разными углами опережения в зависимости от разности частот. (см. рис. 21.) Благодаря этому ускоряется включение линии.

 

Устройства отбора напряжения с линии для цепей АПВ

 

Реле KSS (см. рис. 16.) подключено к двум трансформаторам напряжения, один из которых установлен на шинах подстанции, а другой – на линии. Поскольку на линиях напряжением 220 кВ и ниже трансформаторы напряжения обычно не устанавливают, для измерения напряжения линии используют специальные схемы отбора напряжения, более простые и дешевые, чем электромагнитные трансформаторы напряжения.

В качестве емкостных делителей для устройств отбора напряжения от линии электропередачи используются конденсаторы связи, изоляторы вводов масляных выключателей, силовых трансформаторов и трансформаторов тока, колонки опорных и гирлянды подвесных изоляторов.

 

Однофазное АПВ

 

Общие сведения

 

Опыт эксплуатации воздушных сетей высокого напряжения, работающих с заземленной нейтралью, показывает, что доля однофазных КЗ на ЛЭП весьма высока. Очевидно, что при однофазных КЗ достаточно отключить одну поврежденную фазу с обеих сторон линии и затем автоматически включить её повторно. При этом две другие неповрежденные фазы линии всё время остаются включенными. Этот принцип и положен в основу выполнения ОАПВ.

Основными преимуществами ОАПВ по сравнению с ТАПВ являются:

1. сохранение в цикле ОАПВ по двум фазам, оставшемся в работе, связи между двумя частями энергосистемы (включение при этом происходит без толчков);

2. возможность выполнения АПВ на однофазных выключателях любого типа, как быстродействующих, так и медленнодействующих.

К основным недостаткам ОАПВ можно отнести:

1. Усложнение схемы АПВ за счет введения специальных устройств, выбирающих поврежденную фазу линии, - избирателей и дополнительных блокировок;

2. усложнение, загрубление и замедление РЗ на данной линии, а также и в прилежащей сети, для того, чтобы предотвратить её ложное срабатывание от токов и напряжений нулевой и обратной последовательностей, которые появляются в цикле ОАПВ;

3. вредное влияние несимметрии при работе линии с двумя фазами на генераторы электростанций, а также на линии телефонной связи;

4. блокировка ОАПВ (по принципу действия) при междуфазных КЗ.

В некоторых случаях выполняются комбинированные устройства АПВ, которые при однофазных КЗ действуют как ОАПВ, а при междуфазных – как ТАПВ.

В России ОАПВ получило распространение главным образом на одноцепных или двухцепных ЛЭП напряжением 330–750 кВ. Успешность действия ОАПВ такая же, как и ТАПВ, и составляет от 50 до 80% для ЛЭП разного напряжения.

 


 

ЛЕКЦИЯ №11

 

ОАПВ для ЛЭП с двусторонним питанием

 

На ЛЭП 330–500 кВ применяется устройство типа АПВ-503, которое совместимо с РЗ, установленными на ЛЭП, обеспечивающие:

1. при однофазных КЗ на ЛЭП,


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-25; Просмотров: 2651; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.146 с.)
Главная | Случайная страница | Обратная связь