Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Автотрофное питание. Фотосинтез, его значение.



Автотрофное питание, когда организм сам синтезирует органические вещества из неорганических, включает фотосинтез и хемосинтез (у некоторых бактерий).

Фотосинтез протекает у растений, цианобактерий. Фотосинтез – это образование органических веществ из углекислого газа и воды, на свету, с выделением кислорода. У высших растений фотосинтез происходит в хлоропластах – пластидах овальной формы, содержащих хлорофилл, который определяет окраску зеленых частей растения. У водорослей хлорофилл содержится в хроматофорах, имеющих различную форму. У бурых и красных водорослей, обитающих на значительной глубине, куда затруднен доступ солнечного света, имеются другие пигменты.

Фотосинтез обеспечивает органическим веществом не только растения, но и животных, которые ими питаются. То есть является источником пищи для всего живого на планете.

Фотосинтез – сложный многоступенчатый процесс. Начало ему задает свет. Многолетние исследования фотосинтеза показали, что он включает в себя две стадии: световую и темновую.

Первая стадия фотосинтеза – световая. Под действием энергии света молекулы хлорофилла (и других соединений, называемых переносчиками) возбуждаются и теряют электроны. Часть электронов, захваченных ферментами, способствует образованию АТФ путем присоединения остатка фосфорной кислоты (Ф) к АДФ. Другая часть электронов принимает участие в расщеплении (разложении) воды на молекулярный кислород, ионы водорода и электроны. Разложение воды происходит внутри хлоропласта.

Образовавшийся при расщеплении воды водород с помощью электронов присоединяется к веществу, способному транспортировать водород в пределах хлоропласта. Таким веществом является сложное органическое соединение из группы ферментов – окисленный никотинамидадениндинуклеотидфосфат, или НАДФ. Присоединив водород, НАДФ восстанавливается до НАДФ•Н. В такой химической связи запасается энергия, и заканчивается первая стадия фотосинтеза.

Участие энергии света здесь является обязательным условием. Поэтому данную стадию называют еще стадией световых реакций.

Кислород, образующийся на первой стадии фотосинтеза как побочный продукт при расщеплении воды, выводится наружу или используется клеткой для дыхания.

Вторая стадия фотосинтеза – темновая. Здесь используются образовавшиеся в процессе световых реакций продукты. С их помощью происходит преобразование углекислого газа в простые углеводы – моносахариды. Их создание идет путем большого количества реакций восстановления СО2 за счет энергии АТФ и восстановительной возможности НАДФ • Н. В результате этих реакций образуются молекулы глюкозы (С6Н12О6), из которых путем полимеризации создаются полисахариды – целлюлоза, крахмал, гликоген и другие сложные органические соединения. Поскольку все реакции на этой стадии идут без участия света, ее называют стадией темновых реакций.

Все световые реакции (первая стадия фотосинтеза) происходят на мембранах хлоропласта – в тилакоидах, а темновые (вторая стадия фотосинтеза) – между мембранами внутри хлоропласта – в строме (рис. 17).

Схема фотосинтеза. Продукты световых и темновых реакций фотосинтеза

Сложный поэтапный процесс фотосинтеза идет непрерывно, пока зеленые клетки получают световую энергию.Выделяющийся при фотосинтезе кислород, поступает в атмосферу. В верхних слоях атмосферы из кислорода образуется озон. Озоновый экран защищает поверхность Земли от жесткого ультрафиолетового излучения, что сделало возможным выход живых организмов на сушу.

Кислород необходим для дыхания растений и животных. При окислении глюкозы с участием кислорода в митохондриях запасается почти в 20 раз больше энергии, чем в его отсутствие. Что делает использование пищи гораздо более эффективным, привело к высокому уровню обмена веществ у птиц и млекопитающих.

Все это позволяет говорить о планетарной роли фотосинтеза и необходимости охраны лесов, которые называют «легкими нашей планеты».

Характеристика царства животных. Роль животных в природе. Среди готовых микропрепаратов простейших найдите эвглену зеленую. Объясните, почему эвглену зеленую ботаники относят к растениям, а зоологи – к животным.

К царству животных относятся гетеротрофные организмы, являющиеся фаготрофами, т.е. поглощающие пищу более или менее крупными частями, «кусочками». В отличие от грибов, которые всасывают питательные вещества в виде растворов (осмотрофы).

Животные так же как растения и грибы представлены многоклеточными и одноклеточными организмами. Однако, эти организмы сильно отличаются строением и жизнедеятельностью. Животные и растения отличаются строением клеток, образующих их тела. В клетках у животных нет хлоропластов и других пигментов, характерных для растений. Клетка животных не имеет клеточной стенки, сохраняющей форму клетки как у растений. У животных нет процесса фотосинтеза, им присуще гетеротрофное питание, они питаются уже готовыми органическими веществами. Клетки животных не имеют плотной клеточной оболочки как у растений. Клетка может менять свою форму и положение в пространстве, поэтому на протяжении всей жизни или на отдельных возрастных стадиях животные подвижны. Животные отличаются от растений ещё одной особенностью – они не растут всю жизнь, как растения. У большинства животных имеются системы органов, обеспечивающие жизнь организма - пищеварительная, выделительная, дыхательная, мышечная, опорная, нервная, половая, кровеносная и т. д. Для животных характерна подвижность, хотя некоторые кишечнополостные во взрослом состоянии ведут оседлый образ жизни. Также у большинства животных имеется нервная система, обеспечивающая ответную реакцию на раздражения.

Животные могут быть растительноядными, плотоядными (хищники, падальщики) и всеядными.

В природе животные являются консументами, потребляют готовое органическое вещество и значительно ускоряют круговорот веществ в экосистемах и биосфере в целом. Животные способствуют процветанию многих видов растений, являясь опылителями, распространяя семена, разрыхляя почву, обогащая ее экскрементами. Морским животным, обладающим известковым скелетом, мы обязаны образованием запасов мела, известняка, способствующих постоянной концентрации углекислого газа в атмосфере.

Эвглена зеленая, одноклеточное живое существо, занимает промежуточное положение в систематике, обладая особенностями, присущими разным царствам. Она имеет хлоропласты и на свету питается с помощью фотосинтеза. При наличии в воде растворенных органических веществ, особенно в темноте, она их поглощает, переходя на гетеротрофное питание. Наличие жгутика обеспечивает подвижность, что также роднит ее с животными.

3. Объясните биологическое значение безусловных и условных рефлексов. Составьте схему рефлекторной дуги (безусловного рефлекса) и объясните, из каких частей она состоит. Приведите примеры безусловных рефлексов человека.

Учение о рефлексах связано с трудами отечественного физиолога Ивана Михайловича Сеченова.

Рефлексом называют ответную реакцию организма на раздражение, осуществляемую при участии нервной системы. Рефлексы бывают безусловные – врожденные и условные – приобретенные в течение жизни.

Безусловные рефлексы обеспечивают выживание организма и вида в постоянных условиях среды и на ранних этапах жизни. К ним относятся защитные (мигание при попадании соринки в глаз), ориентировочные (изучение окружающего мира), пищевые (сосание у детей, выработка слюны). Инстинкты тоже носят врожденный характер, их иногда рассматривают как сложную последовательность безусловных рефлексов. Важнейшим инстинктом является продолжение рода.

Для приспособления к новым условиям служат условные рефлексы. Они образуются при наличии определенных условий и обеспечивают наилучшую ответную реакцию. Примером условного рефлекса является прилет птиц к знакомой кормушке, распознавание съедобного и несъедобного (поначалу птенец клюет все подряд), обучение собаки командам.

Рефлекторная дуга безусловного коленного рефлекса включает:

1. рецептор – окончание чувствительного нейрона,

2. нервные пути, по которым сигнал передается в центральную нервную систему – чувствительный нейрон, который передает сигнал в спинной мозг,

3. исполнительный нейрон в передних корешках спинного мозга, передающий ответную команду,

4. орган, производящий ответную реакцию, - мышца.

Большинство дуг других рефлексов включают дополнительно вставочные нейроны.

 

 

Простая рефлекторная дуга:

Звенья простой рефлекторной дуги: 1 – рецептор (в данном случае, в сухожилии); 2 – чувствительный (афферентный) нейрон. Импульс движется к центрам в спинном мозге; 3 – вставочный (промежуточный, переключающий) нейрон; 4 – исполнительный (эфферентный) нейрон. Импульс движется к рабочему органу; 5 – нервное окончание (эффектор), передающее импульс исполнительному органу (в данном случае, мышце).

Билет № 11


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-11; Просмотров: 2733; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь