Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ЛЕКЦИЯ 1 СТОМАТОЛОГИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ - ПРИКЛАДНАЯ НАУКА О МАТЕРИАЛАХ ДЛЯ СТОМАТОЛОГИИ



ВВЕДЕНИЕ

В настоящее время большинство практикующих стоматологов понимает, что без глубокого знания свойств материалов стоматологического назначения невозможно достигнуть функциональной полноценности, эстетичности и долговечности восстановления зубов, следовательно, невозможно оказать пациентам эффективную стоматологическую помощь. Намечая план оказания стоматологической помощи, стоматолог всегда стоит перед выбором наиболее подходящего материала для восстановления зубов конкретному пациенту. За последние 10-15 лет в нашей стране многократно возрос рынок стоматологической техники и материалов. Поэтому осуществить правильный выбор материала для стоматолога, пользуясь только своим опытом и интуицией, очень непросто.

Конец ХХ века и начало нынешнего ознаменовались бурным развитием восстановительных материалов для стоматологии, и, чтобы не отстать, стоматолог должен уметь оценить возможности новых разработок и новых методов применения материалов в клинике. Это потребует от него не просто поверхностных представлений о материалах стоматологического назначения, а глубокого понимания взаимосвязи их химической основы и свойств.

Знание основ материаловедения, различий свойств материалов в зависимости от химической природы и технологии применения позволит использовать в стоматологической практике научно-обоснованные критерии выбора материала.

ЛЕКЦИЯ 2 ОСНОВНЫЕ СВОЙСТВА СТОМАТОЛОГИЧЕСКИХ МАТЕРИАЛОВ

Основные группы свойств, их значение для восстановительной стоматологии. Физикохимические и физико-механические свойства. Сравнение свойств восстановительных материалов со свойствами натуральных тканей зубов. Понятие теоретической прочности и концентрации напряжений.

Главной целью стоматологического материаловедения, о которой мы говорили в предыдущей лекции, является создание комплекса «идеальных» материалов для восстановления зубов и зубочелюстной системы. Именно на это направлено изучение состава, строения и свойств материалов для стоматологии, а также закономерностей изменения этих свойств под влиянием физических, механических и химических факторов. Основным методом и инструментом этого изучения в стоматологическом материаловедении является определение комплекса свойств материалов, имеющих принципиальное значение для их применения в условиях полости рта.

Под действующими факторами полости рта подразумеваются: колебания температуры, высокая постоянная влажность, присутствие электролитной среды. Перечисленные факторы отражаются на изменениях таких физических свойств материала, как теплопроводность, изменения размеров и объема при повышении или понижении температуры, сорбция ротовых жидкостей, возможность возникновения гальванических токов.

К физическим свойствам относятся и оптические свойства материалов, определяющие эстетическое качество восстановления зубов, которые мы более подробно рассмотрим в дальнейшем. Изменения, происходящие в материале в результате химического взаимодействия, химических реакций, отражают его химические свойства. Функциональные нагрузки, воздействующие на восстановительные материалы, предъявляют определенные требования к их механическим свойствам.

Результаты изучения свойств стоматологических материалов имеют не только теоретическое, но и непосредственно практическое значение, связанное с регулированием свойств путем изменения состава материалов и разработкой оптимальных методов и технологий применения материалов в различных областях стоматологии.

Какие же свойства материалов имеют принципиальное значение для применения в стоматологии? Весь комплекс свойств мы разобьем на следующие: физические, механические, химические, эстетические и «биологические». Не следует забывать и о технологических свойствах материалов. Именно они определяют возможность изготовления из того или иного материала пломбы, зубной коронки или зубного протеза.

Строго разграничить свойства материалов на физические, химические и механические не всегда удается, поэтому чаще пользуются такими комплексными понятиями для характеристики различных материалов, как физико-механические и физико-химические свойства. Следует заметить, что не только эстетические свойства материалов, но и показатели биосовместимости связаны с их физическими и химическими характеристиками.

К физическим свойствам мы относим плотность, тепло- и электропроводность, а также реологические и оптические свойства материалов (схема 2.1)

Схема 2.1.

Физико-химические свойства стоматологических материалов

Коэффициент теплопроводности измеряют по количеству тепла в калориях в секунду, которое проходит через образец материала толщиной 1 см и площадью поперечного сечения 1 см2, когда разница температуры на концах образца составляет 1 °С. Чем выше этот показатель, тем более способно вещество пропускать через себя тепловую энергию, и наоборот. Коэффициент теплопроводности выражается в кал/см? с? град

(табл. 2.1).

Таблица 2.1

Значения коэффициента теплопроводности (К) натуральных тканей в сравнении с рядом восстановительных материалов*

Важным физическим свойством материалов, связанным с их теплопроводностью, является линейный коэффициент теплового (термического) расширения (КТЛР). КТЛР показывает изменение относительной длины (линейное изменение, отнесенное к единице длины) образца данного материала, когда его температура возрастет или упадет на 1 °С. В табл. 2.2 приведены коэффициенты термического расширения некоторых веществ, представляющих интерес для стоматологии.

 

* На основе данных WJ. O'Brien «Dental Materials and Their Selection», Quintessence Publ. Co., Inc, 3 изд.

Таблица 2.2

Значения коэффициента линейного термического расширения (α ) для некоторых стоматологических материалов*

К химическим относятся те свойства, которые проявляются при химическом взаимодействии материала или его компонентов с окружающей средой полости рта. Примером такого взаимодействия могут служить реакции между ионами фтора, кальция и фосфора, входящими в составы профилактических материалов, с твердыми тканями зуба. Другой пример химического или электрохимического взаимодействия - окисление некоторых материалов или их компонентов

(сплавов, амальгамы) под действием среды полости рта или пищевых продуктов. С химическими свойствами материалов связаны такие важные для применения в стоматологии процессы, как твердение (отверждение) материалов, некоторые механизмы адгезионного взаимодействия восстановительного материала с окружающими тканями.

Механические свойства материалов подчиняются законам механики, т.е. раздела физики, изучающего закономерности влияния энергии и силы на физические тела. Жевательные и другие функциональные нагрузки - силы, которые действуют на стоматологические материалы при замещении ими утерянных натуральных тканей зубов или зубного ряда. В зависимости от функций, разжевывания твердой или мягкой пищи, глотания и от вида зуба (резцы, клыки, премоляры, моляры) жеватель-

* На основе данных W.J. O'Brien «Dental Materials and Their Selection», Quintessence Publ. Co., Inc, 3 изд.

ная нагрузка колеблется в диапазоне от 50 до 300 Н (иногда и до 500 Н). Наибольшая нагрузка приходится на жевательные (боковые) зубы. Механические свойства определяют, как поведет себя материал под действием этих сил.

 

Следует помнить, что сила - вектор, действие которой определяется численной величиной, направлением и точкой приложения. С точки зрения механических свойств восстановительных материалов в стоматологии не менее важно время действия силы. Механические свойства твердых тел - прочность на растяжение, сжатие, изгиб, кручение, удар, твердость и др. - характеризуют сопротивление материалов воздействию различных нагрузок и в значительной мере определяют область их применения при восстановлении зубов (схема 2.2).

Схема 2.2.

Физико-механические свойства стоматологических материалов

Под действием нагрузки в твердом теле происходят изменения (деформации) или оно разрушается. Различают упругие, или обратимые, деформации (после снятия нагрузки к твердому телу возвращается его первоначальная форма) и остаточные (необратимые или пластичные, после прекращения действия нагрузки форма и размеры тела изменяются).

Материалы по физическим свойствам разделяют на:

• изотропные (свойства материала одинаковы в любых направлениях, например металлы, каучук);

• анизотропные (свойства в различных направлениях не одинаковы, например дерево, волокна, слоистые пластики).

При деформировании образца материала под действием силы или нагрузки, помимо изменения его размеров в продольном направлении, наблюдается изменение размеров и в поперечном. Так, при растяжении образца материала наблюдается, помимо продольного удлинения, его поперечное сужение. Отношение относительной поперечной деформации к относительной продольной деформации называют коэффициентом поперечной деформации - коэффициентом Пуассона - коэффициент Пуассона, характеризует упругие свойства материала). Для большинства материалов ν =1/4 - 1/3.

Прочность восстановительного материала имеет принципиальное значение для выбора конструкции зубного протеза или любого вида восстановления зубов и зубочелюстной системы. Прочностью обычно называют способность какого-либо предмета или изделия, в нашем случае зубного протеза или пломбы, противостоять приложенным к ним нагрузкам, не разрушаясь и не проявляя излишнюю и необратимую деформацию.

 

Важным показателем, определяющим жесткость материала и его способность выдерживать приложенные нагрузки без значительных деформаций, является показатель модуля Юнга - модуля упругости (эластичности). Его определяют, зная данные напряжения и деформации, которые возникают в образце материала под действием приложенной силы, нагрузки (рис.

2.1).

Рис. 2.1.

Основные параметры механических свойств материала при растяжении

По данным литературы, показатели модуля упругости эмали и дентина натуральных зубов колеблются в широком диапазоне, в зависимости от вида зуба и метода испытаний. Так, модуль упругости при сжатии эмали может достигать 46 000-48 000 МПа, а дентина - 11 00018 000. Прочность при сжатии данных натуральных тканей может составить в среднем до 300 МПа

Из практического опыта известно, что керамика способна разрушаться мгновенно и внезапно без видимой деформации или течения. Металлы способны течь и удлиняться до 120% от их первоначальной длины, прежде чем разрушиться. Полимеры в основном не прочны и очень эластичны по сравнению с металлами и керамикой. Знание состава и особенностей структуры этих материалов позволяет объяснить перечисленные различия.

Существует возможность теоретически предсказать прочность материала, исходя из его строения, данных прочности межмолекулярных и межатомных связей. Это так называемая теоретическая прочность материала. Однако показатели реальной прочности материалов, полученные из испытаний, во много раз (10-100) ниже теоретической расчетной прочности. Реальные изделия или образцы, изготовленные из различных материалов, не имеют идеально гладкой поверхности. Большинство изделий в стоматологии - пломбы, искусственные коронки, мостовидные несъемные зубные протезы и т.п. - имеют неправильную геометрическую форму с изгибами, углами, надрезами, в которых будут концентрироваться напряжения под действием жевательных нагрузок. Такие участки изделий обычно называются концентраторами напряжения. Величина напряжения вокруг концентратора может во много раз превышать среднее значение напряжения в теле или образце. Причем рост напряжения вокруг концентратора будет зависеть от формы концентратора. Крошечные царапины, практически всегда находящиеся на поверхности всех материалов даже после полирования, ведут себя как тонкие и острые надрезы, вершины которых настолько остры и тонки, что могут попасть в межмолекулярные пространства в структуре материала. Таким образом, концентрация напряжения в вершинах этих крошечных царапин может приводить к напряжениям, достигающим значений теоретической прочности данного материала при относительно низком значении среднего напряжения.

 

Когда концентраторы действуют в хрупком материале, таком как керамика, в нем образуется трещина, которая мгновенно распространяет-

ся по материалу, приводя к его разрушению. Если такой концентратор напряжения возник в пластичном металле, материал в зоне вершины концентратора напряжения деформируется под его воздействием и превращает острый надрез в закругленную канавку. Из-за того, что вершина концентратора напряжения становится закругленной, а не острой, значение напряжения в ней значительно снижается. Именно так и происходит в металлах и металлических сплавах, обладающих ковкостью, иначе говоря, пластичностью.

Низкая прочность полимеров по сравнению с керамикой и металлами понятна из особенностей молекулярного строения, согласно которому существуют сильные связи внутри полимерных цепей и слабые - между цепями. Слабые вторичные связи между полимерными цепями позволяют этим цепям скользить относительно друг друга при напряжениях намного ниже, чем напряжения, требуемые для разрушения связей в самих цепях.

 

Понятия биоматериала, биоинертности и биосовместимости. Виды воздействия биоматериала на организм. Категории стоматологических материалов как биоматериалов. Программа испытаний стоматологического материала на биосовместимость.

Очевидно, каким бы прочным и привлекательным по своим эстетическим свойствам не был материал, если его применение может вызвать серьезные отрицательные реакции в организме, от применения этого материала придется отказаться. До сих пор мы рассматривали свойства стоматологических материалов без учета его взаимодействия с тканями организма пациента, которому с помощью этого материала восстанавливают зубы или зубочелюстную систему. Мы говорили просто о материалах различной химической природы и их свойствах. Однако любой стоматологический материал взаимодействует на местном и системном уровнях с организмом пациента. Следовательно, стоматологический материал - не просто материал определенной химической природы. К нему применимо понятие биологический материал или биоматериал. Биоматериал - любой инородный материал, который помещается в ткани организма на любое время для того, чтобы устранить деформации или дефекты, заместить поврежденные или утраченные в результате травм или заболеваний натуральные ткани организма.

Биоматериал любого назначения должен обладать свойствами биосовместимости. Что означает этот термин? Надо сказать, что он появился относительно недавно, приблизительно в 1960-х годах. Раньше было принято говорить о биоинертном материале, т.е. материале, который инертен по отношению к окружающим его тканям, не оказывает никакого вредного воздействия на них и никак с ними не взаимодействует. Сейчас, например, от материала для восстановления коронки зуба ожидают образования прочной и постоянной связи с тканями зуба, их оздоровления и регенерации. Называть такой материал инертным неверно.

Поэтому стали использовать термины биоприемлемый, биосовместимый материал. На схеме 5.1 приведены основные требования к биоинертным и биосовместимым материалам стоматологического назначения.

Схема 5.1. Основные требования к биоинертному и биосовместимому материалам

При оценке биосовместимости материалы различают по типам их воздействия на организм:

• общее - токсическое, аллергическое, психологическое;

• местное - механическое, токсическое местное, температурное (изменения в температурном восприятии).

Для того чтобы определить, является ли материал, предназначенный для применения в стоматологии, биосовместимым, до его клинического применения проводят испытания, которые позволяют оценить его биологическое действие согласно стандартам ГОСТ Р ИСО 10993. Их называют испытаниями на соответствие материала нормам и требованиям биосовместимости или токсикологическими испытаниями. Программа испытаний составляется исходя из конкретного назначения материала. Для стандартизованного подхода при составлении программы все стоматологические биоматериалы поделены на категории в зависимости от вида тканей организма, с которыми должен контактировать материал, и времени контакта (схема 5.2).

Схема 5.2.

Категории стоматологических биоматериалов

Определив, к какой категории относится стоматологический материал, предложенный для токсикологических испытаний, приступают непосредственно к составлению программы испытаний, включающей ряд методов или тестов, которые подразделяют на три основные группы или три уровня (схема 5.3).

Краткая история стоматологической керамики. Понятия керамики и фарфора. Классификация стоматологической керамики по назначению. Состав стоматологической керамики. Технология получения и структура керамики.

Керамика - самый древний поделочный искусственный материал, относящийся к каменному веку (неолита), но сохранивший свое значение в человеческом обществе до настоящего времени. Применение керамики в стоматологии связывают с именем французского аптекаря

Alexis Duchateau, который впервые изготовил себе съемные протезы с фарфоровыми зубами.

В 1844-1883 г. началось промышленное производство фарфоровых зубов в Англии, Германии и Америке. В конце XIX в. доктор Лэнд запатентовал способ изготовления жакетных коронок из фарфора на платиновой фольге. А в 1962 г. был запатентован метод изготовления металлокерамических коронок, и началась эра металлокерамики. В конце ХХ века появились новые керамические составы и современные технологии для изготовления цельнокерамических протезов.

Говоря о стоматологической керамике, часто используют два термина для обозначения данного класса восстановительных материалов - керамика и фарфор. По определению энциклопедического словаря (Энциклопедический словарь, М., «Сов. энциклопедия», 1985), слово «керамика» произошло от греческого keramike - гончарное искусство (ker- amosглина). К керамике относят изделия и материалы, полученные спеканием глин и их смесей с минеральными добавками, а также оксидами и другими неорганическими соединениями. Фарфор - это белая полупрозрачная (прозрачная) керамика, которую обжигают до глазурованного состояния.

Первые составы фарфора имели повышенную хрупкость. Их применение в восстановительной стоматологии ограничивалось изготовлени-

ем искусственных зубов и, в редких случаях, коронками для одиночных зубов. С развитием стоматологического материаловедения и совершенствованием материалов для восстановления зубов применение керамических материалов существенно расширилось (схема 10.1).

Схема 10.1.

Виды зубных протезов из керамики

В общем виде состав керамики представляет собой смесь полевого шпата, каолина, кварца и красителей. Полевой шпат является очень распространенным минералом, входящим в состав гранита и других горных пород. Температура его плавления от 1150 до 1200 °С. Полевые шпаты, используемые для стоматологического фарфора, представляют собой смеси натриевого и калиевого полевого шпата. Натриевый полевой шпат называется альбитом, калиевый - микроклином или ортоклазом. Последний - основной материал для получения стоматологической фарфоровой массы.

Каолин, или белая глина, представляет собой продукт разрушения горных пород, состоящий в основном из минерала каолинита, который является соединением алюминия и кремневой кислоты. Каолин - гидратированный алюмосиликат, который действует в качестве связки, повышая способность необожженного фарфора к моделированию. Из-за непрозрачности в состав стоматологической керамики его добавляют только в очень маленьких количествах, если вообще добавляют. При нагревании до температуры 1350 °С каолин спекается, а при нагревании до 1850 °С - плавится.

Кварц - самый распространенный минерал. По своему химическому составу он является ангидридом кремниевой кислоты. В природе встречается в виде прозрачных призм, которые называют горным хрусталем. В зависимости от примесей кварц может принимать различные оттенки. Температура плавления кварца 1800 °С. При расплавлении он превращается в стекловидную массу высокой прочности.

 

Для окрашивания стоматологического фарфора применяют различные оксиды металлов - железа, титана, кобальта и хрома. В состав фарфоровой массы вводят и другие компоненты. Например, плавни (флюсы). Эти вещества понижают температуру плавления фарфоровой массы (карбонат натрия, карбонат кальция и др.). Температура их плавления не выше 800 °С. Пластификаторы - вещества, которые вводят в фарфоровые массы, не содержащие каолина. В качестве пластификаторов используют органические вещества (декстрин, крахмал, сахар), которые полностью выгорают при обжиге. Эти вещества необходимы для придания пластичности фарфоровой массе во влажном состоянии.

Сравнивая составы бытового и стоматологического фарфора, можно легко заметить, что в составе последнего преобладает полевой шпат, а в бытовом - каолин (табл. 10.1).

Таблица 10.1

Сравнение составов бытового и стоматологического фарфора*

В зависимости от соотношения основных компонентов - полевого шпата, каолина и кварца, а также некоторых добавок, фарфор может быть тугоплавким (высокотемпературным), среднеплавким (среднетемпературным) и низкоплавким (низкотемпературным).

* В.Н. Трезубов, М.З. Штейнгарт, Л.М. Мишнев «Ортопедическая стоматология. Прикладное материаловедение», С.-Петербург, Специальная литература, 1999, с. 279.

Благодаря сложным составам современного стоматологического фарфора, в котором присутствует ряд модифицирующих добавок, и широкой вариации режимов обжига, существует возможность варьирования свойствами фарфора в соответствии с конкретным назначением в стоматологии.

Стоматологические фарфоровые массы получают смешиванием исходных компонентов, сплавлением их и затем резким охлаждением в воде. Большое значение имеет тщательный контроль чистоты исходного сырья. Смесь (шихту) помещают в шамотовые тигли и проводят обжиг до получения расплава - стекломассы, которую затем резко охлаждают. В результате такого охлаждения в массе возникают внутренние напряжения, которые приводят к ее растрескиванию. Этот процесс называют фриттованием, а полученный в результате его продукт фриттой. Фритта, как хрупкий материал, легко размалывается в тонкий порошок. Фриттование способствует перемешиванию составных частей массы.

 

Окрашивание и получение различных оттенков стоматологических фарфоровых масс осуществляют добавлением к порошку шихты окрашивающих пигментов. Во время предварительного плавления (фриттования) между компонентами проходят пирохимические реакции и связанные с ними усадочные процессы.

При рентгеноструктурном анализе в обожженной стоматологической керамике определяется кристаллическая фаза лейцит. Наличие лейцита в фазовом составе является отличительной особенностью стоматологической керамики, так как в бытовом фарфоре такая кристаллическая фаза отсутствует. Присутствие лейцита в стоматологической керамике обусловлено использованием в качестве исходного компонента калиевого полевого шпата. Лейцит в фарфоре образуется при термическом разложении калиевого полевого шпата:

при этом SiO2 растворяется в образовавшемся стекле, повышая вязкость расплава. Кристаллы лейцита в виде глобул, равномерно и в большом количестве распределенные в стеклянной матрице, препятствуют распространению трещины и тем самым повышают прочность фарфора. Кроме того, кристаллы лейцита в отличии от муллита (кристаллической фазы бытового фарфора) обладают прозрачностью.

Муллит образуется из каолина (каолинита) при обжиге керамической массы при температуре 1200-1300 °C для изготовления изделий бытового назначения.

Во время последующих обжигов керамических масс в зуботехнической лаборатории порошки фарфоровых масс сплавляются или точнее спекаются при обжиге с образованием восстановительного протеза. Температура этого обжига зависит от состава фарфора и ее следует тщательно контролировать, чтобы получить нужную структуру материала и свести к минимуму пиропластическое течение.

Хотя многие восстановительные марки фарфора содержат кристаллическую фазу, их следует рассматривать как стекла. Высокотемпературный фарфор может быть более точно назван «полевошпатным стеклом».

 

Многочисленными микроскопическими исследованиями установлены следующие структурные элементы фарфора (рис. 10.1): стекловидная изотропная фаза, состоящая из полевошпатного стекла; не растворившиеся в стекле оплавленные частицы кварца; кристаллы лейцита, распределенные в аморфном полевошпатном стекле; микропоры.

Рис. 10.1.

Технологические этапы получения стоматологического фарфора и его структура

Количество стеклофазы возрастает при повышении температуры плавления и увеличении времени плавки. Нерастворившиеся частицы кварца вместе с кристаллами лейцита образуют скелет структуры фарфора.

Важное влияние на свойства фарфора оказывает пористость. Закрытая пористость влияет и на эстетические свойства (уменьшение прозрачности керамического восстановления), и на механическую прочность фарфора. Наибольшую пористость масса имеет перед началом спекания, по мере образования стекловидной фазы пористость снижается, повышается плотность материала и, соответственно, сокращаются размеры изделия.

 

 

Керамика в металлокерамических зубных протезах. Основные свойства стоматологической керамики и нормы стандартов. Керамика в цельнокерамических зубных протезах. Современные технологии применения керамики.

Каждый комплект или набор керамического материала, поступающий в зуботехническую лабораторию, содержит около дюжины цветовых оттенков фарфоровых масс, по крайней мере, 3-х уровней прозрачности для послойного нанесения при изготовлении фарфоровой коронки. Непрозрачная керамическая масса, грунтовая или опаковая, предназначена для закрытия или маскирования поверхности металлического каркаса коронки, имеющей характерный цвет металла. Поверх грунтового слоя наносится основной слой фарфорового покрытия, ко-

Рис. 11.1. Структура металлокерамической коронки, создаваемая послойным нанесением керамических масс*

* На основе классификации W.J. O'Brien «Dental Materials and Their Selection», Quintessence Publ. Co., Inc, 3 изд., с. 211.

торый называют телом коронки или дентиновым слоем. Последний слой фарфора с высокой прозрачностью называется эмалевым или резцовым, он придает коронке естественный вид, образуя полупрозрачный режущий край (рис. 11.1).

При обжиге частицы порошка фарфоровой массы соединяются в результате так называемого спекания. Обжиг в условиях вакуума снижает пористость фарфора. Первый обжиг фарфора называют бисквитным. После наложения резцовой массы проводят последний обжиг - глазурование. При достижении температуры глазурования на поверхности коронки образуется слой стекла, придающий ей гладкий блестящий вид, после чего коронка удаляется из печи и охлаждается.

Прочность фарфора аналогична прочности стекол и хрупких материалов вообще, определяется наличием в них разрывов или микротрещин. Таким образом, прочность при растяжении стекловидного стоматологического фарфора составляет примерно 35 МПа, в то время как прочность при сжатии - 517 МПа. Традиционно стоматологический фарфор испытывают на прочность при изгибе на образцах в виде балочек, при этом согласно стандарту для металлокерамических материалов ГОСТ Р 51736-2001 прочность при изгибе фарфора для облицовки металлических каркасов не должна быть ниже 50 МПа. Прочность фарфора, обожженного в вакууме, выше из-за сокращения в нем количества пор, а следовательно, дефектов структуры, создающих условия для концентрации напряжений. Стандарт устанавливает требования и к пористости фарфора - не более 16 пор диаметром 30 мкм на поверхности площадью 1 мм2. Регламентирует стандарт и коэффициент термического расширения (КТР), устанавливая показатель КТР фарфора близким показателю КТР для сплава, используемого для изготовления каркаса. Важным показателем качества фарфоровой массы для облицовки является показатель линейной усадки при обжиге, он не должен превышать 16%. Очень важен для комбинированных зубных протезов из металла и керамики показатель прочности соединения этих материалов. Прочность соединения керамики с металлом не должна быть ниже 25 МПа.

Для того чтобы устранить недостатки, присущие металлокерамическим протезам, возникающие, прежде всего, из-за сочетания разных по своей природе материалов - металла и керамики, стоматологи и материаловеды направили свои усилия на поиск материалов для изготовления зубных протезов, целиком состоящих из керамики, т.е. материалов для так называемых цельнокерамических протезов (схема 11.1).

Схема 11.1.

Виды керамики для цельнокерамических зубных протезов

В настоящее время в ряде индустриальных стран проходит бурное развитие высоких технологий, связанных с производством керамических изделий. Некоторые из последних достижений химической технологии керамики были внедрены в зуботехнические лаборатории.

Цельнокерамические зубные протезы можно получать самыми разнообразными методами, начиная от литья и заканчивая фрезерной обработкой керамических блоков по компьютерной программе (CAD/CAM). С помощью одних методов можно изготовить только микропротезы (вкладки, накладки, виниры) и одиночные коронки, другие позволяют создать зубные протезы большей протяженности (схема 11.2).

Схема 11.2.

Современные технологии изготовления цельнокерамических зубных протезов

CAD/CAM - системы, основанные на применении высоких технологий (Computer Aided Design/Computer Aided Manufacturing - компьютерное моделирование/компьютерное управление процессом изготовления): Cerec, Siemens, Германия; Duret Sopha Bioconcept, США; DCS President Швейцария. Изделия изготавливаются методом фрезерной обработки керамических блоков по компьютерной программе. Самая известная из систем CAD/CAM Procera (Швеция) предназначена для цельнокерамического каркаса, представляющего собой плотно спеченную керамику с высоким содержанием высокочистого оксида алюминия, который облицовывают низкотемпературным фарфором All Ceram.

 

СТОМАТОЛОГИЧЕСКИЙ ГИПС

Требования к свойствам оттискных материалов. Классификация оттискных материалов. Твердые оттискные материалы - термопластичные компаунды и цинкоксид-эвгенольные материалы.

К оттискным материалам предъявляются следующие требования:

1. Биоинертность, а именно отсутствие токсического воздействия, а также отсутствие значительных термических воздействий, вызванных процессами перехода материала из пластичного состояния в стабильное твердое или эластичное. Отсутствие неприятного вкуса и запаха. Способность оттиска подвергаться дезинфекции.

2. Пластичность или текучесть материала (соответствующая консистенция) при его введении и во время непосредственно снятия оттиска.

3. Размерная точность: минимальная усадка при твердении (отверждении) материала; точное воспроизведение рельефа и микрорельефа тканей полости рта, мягких и твердых; отсутствие постоянной или пластической деформации при выведении готового оттиска из полости рта.

4. Прочность и эластичность оттискного материала, позволяющие вывести оттиск из полости рта без повреждений.

5. Достаточное рабочее время и короткое время твердения/отверж- дения материала.

6. Отсутствие взаимодействия между оттискным материалом (в отвержденном состоянии) и модельным материалом в процессе изготовления (отливки) модели.

Каждый отдельный случай протезирования пациента может потребовать специфических условий для снятия оттиска. С этим связано многообразие видов оттискных материалов, включающих материалы разного химического состава, природы и механизмов твердения (схема 16.1).

Схема 16.1.

Классификация оттискных материалов

Следует отметить, что некоторые оттискные материалы переходят из пластичного текучего состояния в твердое или эластичное в результате протекания химических реакций. Такие оттискные материалы называют необратимыми. Другие виды оттискных материалов осуществляют этот переход за счет физических процессов, например термопластичные компаунды или агаровые гидроколлоиды, эти материалы - обратимые.

В настоящее время гипс редко применяют для снятия оттисков, так как предпочитают снимать более удобные эластичные оттиски. Гипс сохранился в практике ортопедической стоматологии, как очень текучий и точный оттискной материал, для снятия оттисков с беззубых челюстей.

Оттискные компаунды - термопластичные материалы. Их вносят в полость рта в подогретом состоянии (45 °С), где после охлаждения до температуры 35-37 °С они приобретают достаточную твердость и жесткость. Следовательно, механизм твердения этих материалов имеет характер обратимого физического процесса, а не химической реакции.

Существует два типа оттискных компаундов. Тип I предназначен для снятия оттисков, а тип II - для изготовления оттискных ложек. Оттискные компаунды содержат несколько компонентов. В том числе натуральные смолы, которые и придают материалу термопластические

свойства. В состав компаунда входит воск, который также придает материалу термопластичность. В качестве смазки или пластификатора добавляют стеариновую кислоту. Оставшиеся 50% составляют наполнители и неорганические пигменты. Диатомитовые земли и тальк - наиболее типичные наполнители для термопластичных компаундов (рис. 16.1).

Рис. 16.1.

Состав и формы термопластичных компаундов

Преимущества термопластичных оттискных материалов заключаются в том, что они хорошо отделяются от материалов, применяемых для отливки моделей, и легко поддаются металлизации гальваническим способом для получения долговечной износостойкой модели. К преимуществам термопластичных оттискных материалов также относят продолжительное состояние пластичности. Это позволяет проводить функциональные пробы, обеспечивать равномерное распределение давления по всей поверхности соприкосновения материала с подлежащими тканями в процессе снятия оттиска, возможность неоднократного введения оттиска в полость рта и его коррекцию за счет дополнительных слоев материала, которые хорошо соединяются между собой.

 

К недостаткам этих материалов относят сложность работы с ними, получение качественных оттисков в наибольшей степени зависит от опыта работы с компаундами.


Поделиться:



Популярное:

  1. C.Для предоставления возможности сравнивать рыночные стоимости акций компаний одной отрасли
  2. I. 3. ВАКЦИНОЛОГИЯ — наука о лекарственных профилактических биопрепаратах — вакцинах
  3. II этап. Обоснование системы показателей для комплексной оценки, их классификация.
  4. II. ТЕМЫ ДЛЯ КОНТРОЛЬНЫХ РАБОТ
  5. III. Источники для изучения Греческой церкви XVII в.
  6. IV. Источники для изучения той же истории XVIII в.
  7. IX. ЗНАЧЕНИЕ «УНИВЕРСАЛИЙ» КОСМОС, ВРЕМЯ, ПРОСТРАНСТВО И РЕАЛЬНОСТЬ ДЛЯ ПСИХОДРАМЫ
  8. IX. Магическое заклинание для Дальнего путешествия
  9. Teсm для проверки реальности соединения с высшим Я
  10. V. Источники для изучения Греческой церкви XIX в.
  11. VIII. Сигналы, применяемые для обозначения поездов, локомотивов и другого железнодорожного подвижного состава
  12. XII. Большинство приемлемых для организма способов поведения совместимы с представлениями человека о самом себе.


Последнее изменение этой страницы: 2016-04-11; Просмотров: 3022; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.074 с.)
Главная | Случайная страница | Обратная связь