Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ЛЕКЦИЯ 29 МАТЕРИАЛЫ ДЛЯ ПЛОМБИРОВАНИЯ КОРНЕВЫХ КАНАЛОВ ЗУБОВ



Основные требования и классификация материалов для пломбирования корневых каналов. Гуттаперчевые штифты для пломбирования корневых каналов. Нормы показателей качества материалов, установленные стандартами.

Осложнения кариозного заболевания могут привести к вовлечению в патологический процесс тканей пульпы зуба. В таких случаях проводится эндодонтическое лечение. Эндодонтом называется комплекс тканей пульпы и дентина. Общепризнано, что для получения положительного результата эндодонтического лечения необходимо выполнение как минимум трех условий:

• удаление инфицированных тканей пульпы и корневого дентина;

• полноценная обработка (препарирование) стенок корневого канала на всем протяжении от устья, находящегося на дне полости коронки зуба, до апекса (верхушки корня);

• плотное герметичное пломбирование корневого канала. Последнее условие является особенно важным, так как позволяет не

только блокировать выход инфекции за пределы корня зуба, но и воздействовать на состояние тканей периодонта. Нарушение герметичности приводит к проникновению микроорганизмов в корневой канал и их распространению в окружающие его ткани корня зуба и периапикальные ткани. Таким образом, успешное окончание эндодонтического лечения заключается в непроницаемом для бактерий, полном и постоянном закрытии системы корневого канала биосовместимым материалом. Другими словами, свойства материалов для пломбирования корневых каналов зубов и правильная технология их применения во многом обеспечивают успех эндодонтического лечения.

Все требования к материалам для пломбирования корневых каналов зубов можно разделить на традиционные для всех стоматологических материалов группы требований. К биологическим требованиям относится биосовместимость с окружающими живыми тканями и организ-

мом в целом. Материал не должен оказывать раздражающего действия на ткани периодонта. Должен обладать определенным стимулирующим действием на процессы регенерации в тканях периодонта, а также бактерицидным и бактериостатическим действием.

К физико-механическим требованиям относятся следующие: материал должен быть практически безусадочным в процессе затвердевания и обладать постоянством объема в отвержденном состоянии; медленно или продолжительно отверждаться; не рассасываться под воздействием тканевых жидкостей и быть непроницаемым для них; не окрашивать твердые ткани зуба или зуб в целом; обладать адгезионными свойствами по отношению к стенкам корневого канала, т.е. к дентину корневого канала.

К технологическим или манипуляционным свойствам материалов для пломбирования корневых каналов зуба относится их способность легко вводиться в микротонкий канал (диаметром 0, 5-1, 7 мм у устья и 0, 3-1, 0 мм у верхушки-апекса). Материал должен хорошо прилегать к стенкам канала и иметь консистенцию, обеспечивающую плотное заполнение корневого канала на всем его протяжении, т.е. обладать способностью заполнять корневой канал без пустот, в случае необходимости легко выводиться из канала, быть рентгеноконтрастным.

Известны три вида пломбировочных материалов для корневых каналов: нетвердеющие или медленно (более 72 ч) твердеющие пасты, твердеющие материалы, преимущественно цементы, и твердые штифты (схема 29.1).

Пластичные нетвердеющие материалы представляют собой композиции, основу которых составляют оксид цинка или каолин (наполнители), глицерин или вазелин (связующее или основа), в состав паст вводятся различные антисептические добавки: тимол, формалин, фенол, сульфаниламиды, антибиотики и др. К этой группе относится йодоформная, тимоловая, риваноловая пасты. Но эти пасты имеют существенные недостатки: быстро рассасываются, проницаемы для тканевых жидкостей, легко вымываются из верхней части корневого канала. По этим причинам они не применяются для пломбирования каналов в постоянных зубах, а только - во временных (молочных).

 

В качестве твердеющих пломбировочных материалов применяют цементы, амальгамы, пасты с природными и синтетическими связующими, способными отверждаться в условиях полости рта. Известно применение для пломбирования корневых каналов цинк-оксидэвгенольных

Схема 29.1.

Классификация материалов для пломбирования корневых каналов зубов и цинк-фосфатных цементов; материала на основе эпоксидных смол, который устойчив, не растворяется и не окрашивает зуб.

Однако пастообразные материалы (медленно и быстротвердеющие), в том числе и цементы, вызывают определенные трудности в клиническом применении. Это возможность включения воздушных пустот в процессе заполнения пастой корневого канала; усадка при твердении пломбировочного материала, приводящая к проницаемости запломбированного канала; вероятность введения избыточного количества материала (выход пломбировочного материала за верхушку корня). По этим причинам в современной эндодонтии пасты и цементы уже не играют ведущей роли в классе материалов для пломбирования корневых каналов.

Вместо пастообразных материалов в свое время были предложены готовые формы для заполнения корневых каналов - штифты, которые изготавливали из различных металлов: золота, серебра, титана. У штифтов есть свои недостатки. Готовый штифт, например жесткий серебряный, не может плотно закрыть просвет канала на всем его протяжении, так как корневые каналы зубов не имеют, как правило, строгих геометрических форм. Поэтому применяют специальные материалы- уплотнители (называемые также герметиками или силерами), в качестве которых могут использоваться цементы или полимерные герметики.

Наиболее современный тип материала для эндодонтического лечения - гуттаперчевые штифты. Гуттаперча - это сгущенный млечный сок гуттаперчевого дерева, который добывают в Малайзии, Индонезии, Южной Америке. При комнатной или невысокой температуре 60% гуттаперчи имеют кристаллическую структуру, остальная часть - аморфная. Для гуттаперчи характерны свойства полимерных веществ, например вязкоэластичность. Обычно быстрое охлаждение расплава гуттаперчи приводит к кристаллизации ее в «α -форму» транс-полиизопрена. Это свойство используется в технологии производства большинства коммерческих марок гуттаперчи. При медленном постепенном охлаждении, разогретой до температуры выше 65 °С со скоростью 0, 5 °С/с, гуттаперча переходит в «β -форму», текучую и слишком мягкую для конденсации ее в канале корня зуба.

 

В составе штифтов для пломбирования корневых каналов содержатся около 20% гуттаперчи, около 66% оксида цинка в качестве наполнителя, около 11% сульфатных солей металлов для придания штифтам рентгеноконтрастности и около 3% пластификаторов (воски и смолы).

Гуттаперча в качестве материала для пломбирования каналов корня зуба имеет хорошие свойства: обладает биоинертностью, легким антибактериальным эффектом, легко вводится в канал и ее несложно при необходимости удалить, не имеет усадки, влагоустойчива, рентгеноконтрастна и не окрашивает ткани зуба. К недостаткам гуттаперчи относятся:

сложность стерилизации (ее можно подвергать только дезинфекции), невозможность достичь абсолютного уплотнения в канале и необходимость дополнительного применения уплотнительных композиций.

Уплотнители, герметики (силеры) - это материалы, применяемые в небольшом количестве для герметизации системы корневого канала. Требования к ним такие же, как и к пластичным материалам для пломбирования корневых каналов. Самым распространенным уплотнителем является цинк-оксид-эвгенольный цемент. Применяют также стеклоиономерные цементы и цементы на основе гидроксида кальция.

Несмотря на многочисленные методы эндодонтического лечения и ряд достаточно эффективных материалов, особенно гуттаперчевых штифтов в сочетании с уплотнителямигерметиками, традиционное лечение с пломбированием корневого канала может оставлять инфицированную дельту в апикальной части корня, в которой может содержаться

более 20 боковых ответвлений с соответствующим числом микроотверстий. В таком случае пломбирование канала нельзя признать герметичным. Для решения этой проблемы в 1998 г. был предложен новый метод под названием «Депофорез гидроксида меди-кальция». При депофорезе под действием электрического поля в течение нескольких минут из суспензии гидроксида меди-кальция, которой предварительно заполняют корневой канал и в которую погружают катод прибора для депофореза (анод помещают за щекой пациента), происходит транспорт суспензии через все ответвления дельты вплоть до отверстий. Из транспортируемого состава выпадает осадок гидроксида двухвалентной меди Cu(OH)2, который способен закупоривать все отверстия. Новый метод пока активно изучается, и его рекомендуют в тех случаях, когда возникают значительные трудности в лечении традиционными методами.

 

Свойства материалов для пломбирования корневых каналов регламентируются стандартами

(международными и российским). В пересмотренной редакции международного стандарта N 6876 1986 г. и соответствующему ему ГОСТ Р 51059-97 (ИСО 6876-86) «Материалы для заполнения (или герметизации) корневых каналов зубов» было исключено разделение материалов на типы твердеющих и нетвердеющих. В разделе стандарта, представляющем область его применения, указывалось, что он распространяется на материалы, используемые для постоянного пломбирования корневого канала с и без штифтов (табл. 29.1). Требования стандарта к готовым формам для пломбирования корневых каналов изложены в МС 6877.2 «Штифты стоматологические для пломбирования каналов корня».

Таблица 29.1

Технические требования к материалам для пломбирования корневых каналов зубов (нормы стандартов)

 

ЛЕКЦИЯ 30 МАТЕРИАЛЫ ДЛЯ ВОССТАНОВИТЕЛЬНОЙ ХИРУРГИИ ЛИЦА И ДЛЯ ЗУБНЫХ ИМПЛАНТАТОВ

Классификация имплантационных материалов для хирургической стоматологии. Некоторые сведения о составе и свойствах материалов, применяемых для восстановительной хирургии лица. Общая характеристика материалов для зубных имплантатов.

В настоящее время при лечении различных заболеваний и травм, для устранения дефектов костей или соединения отломков применяют имплантаты - конструкции из металлов, керамики, полимеров, способные замещать в живом организме утраченные естественные ткани и выполнять определенную функцию.

В современной челюстно-лицевой хирургии и в восстановительной стоматологии можно выделить несколько направлений использования метода имплантации и различные виды имплантатов, применяемых в этих разделах медицины. На схеме 30.1 представлена классификация материалов и изделий для восстановительной хирургии лица и

зубочелюстной системы. В ней объединены различные по химической природе и, главное, по назначению группы материалов: материалы, применяемые в восстановительной хирургии лица, и материалы (изделия), применяемые в качестве зубных имплантатов.

Проблемы восстановительной хирургии лица у пациентов с врожденными,

послеоперационными и посттравматическими дефектами тканей лица остаются актуальными в настоящее время. Такое положение требует разработок новых биоинертных и биосовместимых материалов, обладающих высокой механической прочностью, стойкостью к естественному старению и долговечностью, создания более совершенных технологий изготовления индивидуальных имплантатов для эндопротезирования, а также эктопротезов лица.

Схема 30.1. Основные виды имплантатов для устранения дефектов и деформаций лица и челюстнолицевой области и материалов для их изготовления

В хирургической стоматологии для исправления дефектов и деформаций челюстно-лицевой области применялись многие синтетические полимерные материалы: акрилаты, поливинилхлорид и сополимеры винилхлорида, полиэтилен и сополимеры этилена с полиизобутиленом, тефлон. Хорошо зарекомендовали себя материалы на основе силоксановых каучуков - силиконы, отвечающие требованиям, которые предъявляются к идеальному аллопластическому материалу в восстановительной хирургии лица. В таком материале не должно происходить никаких физических изменений под влиянием окружающих живых тканей. Он не должен вызывать воспалительных реакций на инородное тело. Не должен быть канцерогенным, вызывать аллергические реакции. Должен противостоять возможным механическим нагрузкам, выдерживать стерилизацию, быть технологичным, чтобы легко было изготавливать имплантаты нужной формы.

В настоящее время имплантаты для челюстно-лицевой хирургии изготавливают из материала на основе высоковязкого полидиметилсилоксанового (силиконового) каучука, молекулы которого имеют винильные концевые группы. Материалы содержат наполнитель - оксид

кремния с частицами коллоидного размера, аэросил, инициатор вулканизации, чаще пероксид дихлорбензоила и добавки. Для получения из силиконового каучука вулканизата или резины существуют различные способы вулканизации:

• при комнатной температуре - холодная вулканизация;

• вулканизация при повышенной температуре - горячая вулканизация;

• вулканизация под действием радиационного излучения - радиационная вулканизация.

Применение радиационной вулканизации позволило получить более качественные силиконовые имплантаты, так как в их составе отсутствовали органические перекиси и не требовался длительный высокотемпературный прогрев (термостатирование при температуре 200 °С) для удаления остатков перекиси. Но широкого распространения этот метод вулканизации не получил из-за серьезных технологических и организационных трудностей.

Для устранения дефектов мягких тканей были разработаны композиции силиконовых материалов холодной вулканизации. Они напоминают составы, применяемые для снятия оттисков, но содержат мало (или совсем не содержат) наполнителей, обладают очень высокой текучестью, что позволяет вводить их инъекционным методом. Большей биоинертностью обладают композиции, отверждающиеся по реакции полиприсоединения (аддитивные) с применением платинового комплекса в качестве катализатора.

Важное практическое значение имеет создание и внедрение в медицинскую практику новых методик эктопротезирования, использующих также силоксановые эластомеры для изготовления протезов, которые можно фиксировать с помощью специальных медицинских клеев или на предварительно установленные имплантаты. Такие методики позволяют провести ортопедическое лечение пациентов с дефектами и деформациями средней зоны лица, когда хирургическое вмешательство нецелесообразно или невозможно.

 

Стоматологическая имплантология в настоящее время является одним из наиболее развивающихся направлений восстановительной стоматологии. В этом разделе изучаются вопросы устранения дефектов зубочелюстной системы с помощью имплантатов - накостных и внутрикостных конструкций из различных биосовместимых материалов (рис. 30.1).

Рис. 30.1.

Варианты конструкций зубных имплантатов*

Применение имплантатов как метода лечения пациентов в стоматологии стало расширяться в последнее десятилетие. Было установлено, что зубные имплантаты можно успешно применять в качестве частичной или полной опоры для протезов в течение длительного времени.

Применение зубных имплантатов основано на биомеханизме остеоинтеграции. Этим термином обозначено явление, которое создает непосредственную структурную и функциональную связь между упорядоченной живой костью (или костной тканью) и поверхностью воспринимающего нагрузку имплантата. В успешно функционирую-

* Модифицированный рисунок. DENTAL MATERIALS: Properties and Selection. Ed. William J. O'Brien, Quintessence Publ.Co., Inc.2002, с. 296.

щем имплантате проходит процесс остеогенеза на поверхности раздела «имплантат-костная ткань», и, таким образом, достигается клиническая стабильность (неподвижность) имплантата.

Существует множество взаимосвязанных клинических, биологических, конструктивных и материаловедческих факторов, которые влияют на реакцию тканей полости рта на имплантат и успешную его остеоинтеграцию. В зависимости от методики хирургического вмешательства, поверхностной химии имплантата и его подвижности может меняться толщина зон мягкой соединительной ткани и неструктурированной костной ткани. Чем толще последние слои, тем хуже степень остеоинтеграции и больше вероятность возникновения подвижности и потери имплантата.

 

Плотность прилегания имплантата к окружающей костной ткани, или полноценность остеоинтеграции, зависит от природы материала для имплантата, механических, химических, биологических и местных факторов, которые подвержены изменениям в зависимости от времени имплантации in vivo.

Материал имплантата может подвергаться коррозии и/или износу, приводящему к образованию микронных и субмикронных загрязнений, которые, в свою очередь, могут вызывать местные и общие реакции организма. Металлы более подвержены

электрохимическому разрушению по сравнению с керамикой. Благодаря инертной оксидной пленке на поверхности титановых имплантатов этот металл дает хорошие результаты при имплантации. В случае применения имплантатов из чистого титана было замечено образование слоя кальцинированных тканей непосредственно на поверхности имплантата толщиной несколько сотен А (ангстрем).

К механически свойствам материалов, которые особенно важны для зубных имплантатов, можно отнести жесткость, предел текучести и предел прочности. Жесткость или модуль упругости должны быть таковыми, чтобы имплантат был способен передавать напряжения от функциональных нагрузок соседним с ним тканям и поддерживать жизнеспособность окружающих тканей длительное время.

Можно выделить два основных класса материалов - металлы и керамику, которые применяются в качестве зубных имплантатов (схема 30.1). Металлические имплантаты обычно изготавливают из чистого титана или титанового сплава Ti-6Al-4V, хотя известно и применение сплавов на основе кобальта. И титан, и указанный титановый сплав обладают пре-

красной коррозионной стойкостью в широком диапазоне рН. Их химическая инертность способствует остеоинтеграции. Сплав титана с алюминием и ванадием имеет более высокую прочность (на 60% выше), чем чистый титан, но он более дорогой. Создание шероховатой поверхности за счет специальной обработки или нанесения покрытий улучшает условия для остеоинтеграции, но приводит к снижению прочности имплантата по сравнению с имплантатом, имеющим гладкую поверхность.

 

Керамика - химически стабильный материал, вероятность возникновения отрицательных реакций на керамику меньше, чем на металл, который имеет приемлемую инертность только благодаря оксидным пленкам на поверхности. Два типа керамики представляют интерес в качестве инертного имплантационного материала - углеродная и алюмоксидная. В последнее время керамику стали подразделять на биоактивную и биодеградируемую. В то время как инертная керамика вызывает минимальную реакцию тканей, биоактивная частично растворима, способна к ионному обмену и образованию непосредственной связи между имплантатом и костью.

Биорезорбируемая (или биодеградируемая) керамика имеет более высокую степень растворимости, чем биоактивная. Постепенно разрушаясь, она включается в окружающие ткани и служит для наращивания или роста костной ткани. Биоактивная керамика часто наносится в качестве активного слоя на металл. Именно такие слои удается создать с помощью так называемых биоактивных стекол, стеклокерамики и кальцийфосфатной керамики. Наиболее была изучена апатитная керамика, к которой относится гидроксилапатитная, подобная минеральной фазе кости и зубов. Такой тип керамики позволял за счет сродства материалов имплантата и натуральных тканей получить лучшее соединение между ними и, прежде всего, с костной тканью.

Качество активного слоя на металлическом имплантате зависит от размера и формы частиц порошкообразного слоя; размера, формы и характера распределения пор в покрытии; суммарной площади поверхности, наличия различных фаз, присутствия кристаллических структур и их размера; плотности, толщины, твердости и шероховатости покрытия.

Технология литья и механической обработки металлических имплантатов, нанесение на их поверхности керамики или специальных металлических покрытий, так же как и процессы очистки поверхности и стерилизации имплантатов, существенно влияют на микроструктуру, химию поверхности и свойства имплантата.

 

 

ВОПРОСЫ К ЛЕКЦИОННОМУ КУРСУ & LAQUO; СТОМАТОЛОГИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ& RAQUO;


Поделиться:



Популярное:

  1. C.Для предоставления возможности сравнивать рыночные стоимости акций компаний одной отрасли
  2. II этап. Обоснование системы показателей для комплексной оценки, их классификация.
  3. II. ТЕМЫ ДЛЯ КОНТРОЛЬНЫХ РАБОТ
  4. III. Источники для изучения Греческой церкви XVII в.
  5. IV. Источники для изучения той же истории XVIII в.
  6. IX. ЗНАЧЕНИЕ «УНИВЕРСАЛИЙ» КОСМОС, ВРЕМЯ, ПРОСТРАНСТВО И РЕАЛЬНОСТЬ ДЛЯ ПСИХОДРАМЫ
  7. IX. Магическое заклинание для Дальнего путешествия
  8. Teсm для проверки реальности соединения с высшим Я
  9. V. Источники для изучения Греческой церкви XIX в.
  10. VIII. Сигналы, применяемые для обозначения поездов, локомотивов и другого железнодорожного подвижного состава
  11. XII. Большинство приемлемых для организма способов поведения совместимы с представлениями человека о самом себе.
  12. XVI. Любой опыт, несовместимый с организацией или структурой самости, может восприниматься как угроза, и чем больше таких восприятий, тем жестче организация структуры самости для самозащиты.


Последнее изменение этой страницы: 2016-04-11; Просмотров: 1220; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.031 с.)
Главная | Случайная страница | Обратная связь