Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
В процессе измерения не следует прикасаться к соединительным проводам, клеммам и элементам испытуемой цепи для исключения протекания тока через тело работающего с прибором.Стр 1 из 2Следующая ⇒
Лабораторная работа № 3
ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ ИЗОЛЯЦИИ И ЗАЗЕМЛЕНИЯ
Цель работы: получить представление об электрической изоляции и заземлении; о процессе растекания тока в грунте Земли; о методах измерения сопротивлений изоляции, заземляющих устройств, удельного сопротивления грунта; познакомиться с упрощённым методом расчёта заземляющих устройств. Теоретическая часть 1. Электрическая изоляция Применение электрической изоляции в электроустановках необходимо для достижения двух основных целей: · обеспечение работоспособности электроустановок; · обеспечение защиты обслуживающего персонала от поражения электрическим током. Защитные функции электрической изоляции заключаются в отделении человека от токопроводящих элементов изолирующим слоем (диэлектриком) с большим электрическим сопротивлением. В случае контакта человека с электрической изоляцией токопроводящих элементов сопротивление тела человека Rh (обычно оно составляет единицы или десятки кОм) и сопротивление изоляции Rиз (обычно единицы и даже десятки МОм) оказываются включенными последовательно в цепи тока, протекающего через тело человека, т. е. электрическая изоляция позволяет, исключая непосредственный контакт человека с токопроводящими элементами, существенно уменьшить ток через тело человека. Таким образом, электрическая изоляция - важнейшее средство обеспечения электробезопасности. Наиболее важной характеристикой изоляции является величина её электрического сопротивления. Действие переменных токов меньших 0, 5 мА (пороговое значение ощутимого тока), практически не ощущается организмом человека. Согласно ГОСТ 12.1.038-82* переменный ток частотой 50 Гц, протекающий через тело человека при нормальном (неаварийном) режиме работы электроустановки и времени воздействия не более 10 мин в сутки, не должен превышать 0, 3 мА. В электроустановках используется несколько видов изоляции. Рабочая изоляция обеспечивает нормальное функционирование электроустановки. Она выбирается исходя из технических требований, поэтому надежность защиты человека не всегда оказывается приемлемой. Дополнительная (защитная) изоляция – независимая изоляция, являющаяся дополнением к рабочей изоляции и предназначенная для защиты человека от поражения электрическим током при повреждении рабочей изоляции. Двойная изоляция – это совокупность рабочей и дополнительной изоляции, при которой доступные прикосновению части электроустановки не приобретают опасного напряжения при повреждении только рабочей или только защитной (дополнительной) изоляции. Усиленная изоляция – это улучшенная с учетом требований электробезопасности рабочая изоляция, обеспечивающая такую же степень защиты от поражения электрическим током, как и двойная. Она может быть однослойной или иметь несколько слоев, конструктивно выполненных так, что каждую из составляющих изоляции отдельно испытать нельзя. Двойную или усиленную изоляцию обязательно должны иметь устройства бытового и аналогичного общего применения. В электроустановках с двойной изоляцией должна быть полностью исключена возможность прикосновения человека к неизолированным металлическим частям устройства, которые могут оказаться под напряжением при повреждении рабочей изоляции. Электроустановки с двойной или усиленной изоляцией не следует заземлять или занулять, поэтому они не имеют соответствующих присоединительных элементов. В качестве дополнительной изоляции наиболее широко используют пластмассовые корпуса, ручки, втулки и т. п. Однако устройство с двойной изоляцией может иметь корпус или другие части, доступные прикосновению и выполненные из металлов. В этом случае их отделяют от всех металлических конструктивных элементов электроаппарата, которые могут оказаться под напряжением (шасси, оси регуляторов, статоры электродвигателей и т.п.), изолирующими слоями. Электрическая изоляция должна выдерживать предельно возможные в условиях эксплуатации электрические, механические и тепловые нагрузки, соответствовать требованиям электробезопасности. Для обеспечения надежности изоляции при выборе ее материала и параметров следует учитывать ряд факторов и требований. К ним относятся вид, назначение, особенности электроустановки и ее элементов, напряжения и токи, возможные электрические перегрузки, механические, термические и химические воздействия, параметры среды, требования пожарной безопасности, малой токсичности и др. Со временем из-за старения и негативно действующих эксплуатационных факторов (резкие перепады температуры, чрезмерная увлажненность или сухость воздуха, загрязнения среды, механические и электрические перегрузки и т.п.) параметры изоляции, влияющие на опасность поражения током, могут ухудшиться. Поэтому систематически следует проводить профилактические осмотры состояния изоляции, устранять выявленные дефекты и осуществлять контроль изоляции - измерять ее активное сопротивление. Различают непрерывный и периодический контроль изоляции. Непрерывный контроль постоянно осуществляется в действующей электроустановке, находящейся под напряжением, автоматическими устройствами. Устройства непрерывного контроля позволяют осуществлять постоянное наблюдение за состоянием электрической изоляции. Они могут автоматически сигнализировать о случаях возникновения каких-либо дефектов изоляции, что позволяет принять меры для быстрого поиска, устранения повреждения и исключить длительное существование опасной ситуации. Непрерывный контроль изоляции используется в сетях с изолированной нейтралью, в которых электрическая изоляция (как средство защиты от поражения током) играет исключительно важную роль. Периодический контроль изоляции – это измерение ее активного сопротивления в установленные Правилами сроки, а также после проведения планово-предупредительных работ, ремонта, монтажа. В помещениях без повышенной опасности (в них отсутствуют химически активная среда и признаки повышенной опасности: относительная влажность воздуха более 75 %, токопроводящие пыль или пол, температура воздуха более 35 0С; возможность одновременного прикосновения к металлическим корпусам электрооборудования и металлическим элементам зданий, имеющих соединение с землей) периодичность измерения –1 раза в 3 года. В помещениях с повышенной опасностью, где действует лишь один из признаков повышенной опасности и отсутствуют химически активная среда и особая сырость (относительная влажность близка к 100 %), измерения должны проводиться 1 раз в год. В особо опасных помещениях (в них действует не менее двух признаков повышенной опасности или же химически активная среда, или особая сырость) изоляцию контролируют 2 раза в год. Изоляцию переносного электроинструмента проверяют перед выдачей на руки для пользования, после ремонта и периодически - 1 раз в месяц. Все измерения, связанные с периодическим контролем изоляции, должны осуществляться при обесточенном участке электрической сети и отключенных электроустановках. К токоведущим элементам, изоляция между которыми контролируется, в процессе измерения прикладывается измерительное напряжение, повышенное относительно напряжения электрической сети, что обеспечивается специальными измерительными приборами – мегаомметрами. Мегаомметр предназначен для измерения сопротивлений и испытания на электрическую прочность (т. е. на отсутствие электрического пробоя) изоляции электрооборудования, не находящегося под напряжением. В процессе контроля в мегаомметре формируется измерительное напряжение постоянного тока, прикладываемое к объекту испытания. Величина этого напряжения регламентирована Правилами устройства электроустановок (ПУЭ) [3] и может быть равной от 100 до 2500 В. В мегаомметрах М4100, М1101 для получения измерительного напряжения используется встроенный электромеханический генератор, приводимый в действие путём вращения от руки. Скорость вращения указывается в паспорте (обычно 1-2 об/с). В приборе Ф4101 для формирования измерительного напряжения используется электронный преобразователь низковольтного напряжения элементов питания в высоковольтное со значениями о 100 до 1000 В. Лабораторная работа № 3
ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ ИЗОЛЯЦИИ И ЗАЗЕМЛЕНИЯ
Цель работы: получить представление об электрической изоляции и заземлении; о процессе растекания тока в грунте Земли; о методах измерения сопротивлений изоляции, заземляющих устройств, удельного сопротивления грунта; познакомиться с упрощённым методом расчёта заземляющих устройств. Теоретическая часть 1. Электрическая изоляция Применение электрической изоляции в электроустановках необходимо для достижения двух основных целей: · обеспечение работоспособности электроустановок; · обеспечение защиты обслуживающего персонала от поражения электрическим током. Защитные функции электрической изоляции заключаются в отделении человека от токопроводящих элементов изолирующим слоем (диэлектриком) с большим электрическим сопротивлением. В случае контакта человека с электрической изоляцией токопроводящих элементов сопротивление тела человека Rh (обычно оно составляет единицы или десятки кОм) и сопротивление изоляции Rиз (обычно единицы и даже десятки МОм) оказываются включенными последовательно в цепи тока, протекающего через тело человека, т. е. электрическая изоляция позволяет, исключая непосредственный контакт человека с токопроводящими элементами, существенно уменьшить ток через тело человека. Таким образом, электрическая изоляция - важнейшее средство обеспечения электробезопасности. Наиболее важной характеристикой изоляции является величина её электрического сопротивления. Действие переменных токов меньших 0, 5 мА (пороговое значение ощутимого тока), практически не ощущается организмом человека. Согласно ГОСТ 12.1.038-82* переменный ток частотой 50 Гц, протекающий через тело человека при нормальном (неаварийном) режиме работы электроустановки и времени воздействия не более 10 мин в сутки, не должен превышать 0, 3 мА. В электроустановках используется несколько видов изоляции. Рабочая изоляция обеспечивает нормальное функционирование электроустановки. Она выбирается исходя из технических требований, поэтому надежность защиты человека не всегда оказывается приемлемой. Дополнительная (защитная) изоляция – независимая изоляция, являющаяся дополнением к рабочей изоляции и предназначенная для защиты человека от поражения электрическим током при повреждении рабочей изоляции. Двойная изоляция – это совокупность рабочей и дополнительной изоляции, при которой доступные прикосновению части электроустановки не приобретают опасного напряжения при повреждении только рабочей или только защитной (дополнительной) изоляции. Усиленная изоляция – это улучшенная с учетом требований электробезопасности рабочая изоляция, обеспечивающая такую же степень защиты от поражения электрическим током, как и двойная. Она может быть однослойной или иметь несколько слоев, конструктивно выполненных так, что каждую из составляющих изоляции отдельно испытать нельзя. Двойную или усиленную изоляцию обязательно должны иметь устройства бытового и аналогичного общего применения. В электроустановках с двойной изоляцией должна быть полностью исключена возможность прикосновения человека к неизолированным металлическим частям устройства, которые могут оказаться под напряжением при повреждении рабочей изоляции. Электроустановки с двойной или усиленной изоляцией не следует заземлять или занулять, поэтому они не имеют соответствующих присоединительных элементов. В качестве дополнительной изоляции наиболее широко используют пластмассовые корпуса, ручки, втулки и т. п. Однако устройство с двойной изоляцией может иметь корпус или другие части, доступные прикосновению и выполненные из металлов. В этом случае их отделяют от всех металлических конструктивных элементов электроаппарата, которые могут оказаться под напряжением (шасси, оси регуляторов, статоры электродвигателей и т.п.), изолирующими слоями. Электрическая изоляция должна выдерживать предельно возможные в условиях эксплуатации электрические, механические и тепловые нагрузки, соответствовать требованиям электробезопасности. Для обеспечения надежности изоляции при выборе ее материала и параметров следует учитывать ряд факторов и требований. К ним относятся вид, назначение, особенности электроустановки и ее элементов, напряжения и токи, возможные электрические перегрузки, механические, термические и химические воздействия, параметры среды, требования пожарной безопасности, малой токсичности и др. Со временем из-за старения и негативно действующих эксплуатационных факторов (резкие перепады температуры, чрезмерная увлажненность или сухость воздуха, загрязнения среды, механические и электрические перегрузки и т.п.) параметры изоляции, влияющие на опасность поражения током, могут ухудшиться. Поэтому систематически следует проводить профилактические осмотры состояния изоляции, устранять выявленные дефекты и осуществлять контроль изоляции - измерять ее активное сопротивление. Различают непрерывный и периодический контроль изоляции. Непрерывный контроль постоянно осуществляется в действующей электроустановке, находящейся под напряжением, автоматическими устройствами. Устройства непрерывного контроля позволяют осуществлять постоянное наблюдение за состоянием электрической изоляции. Они могут автоматически сигнализировать о случаях возникновения каких-либо дефектов изоляции, что позволяет принять меры для быстрого поиска, устранения повреждения и исключить длительное существование опасной ситуации. Непрерывный контроль изоляции используется в сетях с изолированной нейтралью, в которых электрическая изоляция (как средство защиты от поражения током) играет исключительно важную роль. Периодический контроль изоляции – это измерение ее активного сопротивления в установленные Правилами сроки, а также после проведения планово-предупредительных работ, ремонта, монтажа. В помещениях без повышенной опасности (в них отсутствуют химически активная среда и признаки повышенной опасности: относительная влажность воздуха более 75 %, токопроводящие пыль или пол, температура воздуха более 35 0С; возможность одновременного прикосновения к металлическим корпусам электрооборудования и металлическим элементам зданий, имеющих соединение с землей) периодичность измерения –1 раза в 3 года. В помещениях с повышенной опасностью, где действует лишь один из признаков повышенной опасности и отсутствуют химически активная среда и особая сырость (относительная влажность близка к 100 %), измерения должны проводиться 1 раз в год. В особо опасных помещениях (в них действует не менее двух признаков повышенной опасности или же химически активная среда, или особая сырость) изоляцию контролируют 2 раза в год. Изоляцию переносного электроинструмента проверяют перед выдачей на руки для пользования, после ремонта и периодически - 1 раз в месяц. Все измерения, связанные с периодическим контролем изоляции, должны осуществляться при обесточенном участке электрической сети и отключенных электроустановках. К токоведущим элементам, изоляция между которыми контролируется, в процессе измерения прикладывается измерительное напряжение, повышенное относительно напряжения электрической сети, что обеспечивается специальными измерительными приборами – мегаомметрами. Мегаомметр предназначен для измерения сопротивлений и испытания на электрическую прочность (т. е. на отсутствие электрического пробоя) изоляции электрооборудования, не находящегося под напряжением. В процессе контроля в мегаомметре формируется измерительное напряжение постоянного тока, прикладываемое к объекту испытания. Величина этого напряжения регламентирована Правилами устройства электроустановок (ПУЭ) [3] и может быть равной от 100 до 2500 В. В мегаомметрах М4100, М1101 для получения измерительного напряжения используется встроенный электромеханический генератор, приводимый в действие путём вращения от руки. Скорость вращения указывается в паспорте (обычно 1-2 об/с). В приборе Ф4101 для формирования измерительного напряжения используется электронный преобразователь низковольтного напряжения элементов питания в высоковольтное со значениями о 100 до 1000 В. В процессе измерения не следует прикасаться к соединительным проводам, клеммам и элементам испытуемой цепи для исключения протекания тока через тело работающего с прибором. При контроле сетевых электропроводок измеряют сопротивления изоляции на отдельных, предварительно обесточенных и отсоединенных от остальной части сети участках. Под участком электрической сети в данном случае понимают её часть, расположенную между двумя смежными аппаратами защиты (плавкими предохранителями, автоматическими выключателями) или за последним из них и нагрузкой. Перед измерениями ограничивающие участок автоматы защиты отключают, плавкие вставки предохранителей удаляют, принимают меры для разряда емкостей с целью снятия возможных остаточных зарядов. Участок сети оказывается обесточенным. В силовых цепях отключают все электроприемники (приборы, оборудование), в осветительных цепях вывинчивают (вынимают) лампы, а штепсельные розетки, выключатели и групповые щитки оставляют присоединенными. После этого на исследуемом участке сети мегаомметром измеряют сопротивления изоляции между каждым проводом и землей (заземленным корпусом), а также между двумя любыми проводами. Популярное:
|
Последнее изменение этой страницы: 2016-05-03; Просмотров: 876; Нарушение авторского права страницы