Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Цвет минерала в порошке. Черта.Стр 1 из 2Следующая ⇒
Охарактеризуйте оптические своиства (цвет в куске, ЦВЕТ ЧЕРТЫ, прозрачность) и собственно-физические своиства минералов (плотность, магнитность, радиоактивность, люменисценция).От чего зависят физические своиства минералов? Физические свойства минералов имеют большое значение не только для их использования, но и для диагности (определения). Они зависят от химического состава и типа кристаллической структуры. Физические свойства могут представлять собой скалярную величину, т.е постоянны во всех направлениях кристаллической решетки, или быть векторными. К последним, могут у отдельных минералов и их агрегатов, относится твердость, спайность, оптические свойства. Плотность. Плотность минералов измеряется в граммах на см3 (г/см3) и в значениях, у разных минералов, колеблется от 1 (жидкие битумы) до 23 (осмистый иридий). Оснавная масса минералов имеет плотность от 2, 5 до 3, 5, что определяет среднюю плотность земной коры в 2, 7 - 2, 8 г/см3. Минералы по плотности условно можно разделить на три группы:
Некоторые минералы легко узнаются по большой плотности (барит - 4, 5, церрусит - 6, 5). Минералы, содержащие тяжелые металлы, имеют большую плотность. Наибольшую плотность в мире минералов имеют самородные элементы - медь, серебро, золото, минералы группы платины. В минералах одного и того же состава плотность определяется характером упаковки атомов в структурной ячейке кристалла. Наиболее яркие примеры: алмаз (3, 5) и графит (2, 2) - оба образованы из одного и того же вещества - углерода, но имеют различные кристаллические структуры. Другой пример: кальцит, имеет состав Ca[CO3], плотность 2, 6 - 2, 8 и арагонит, того же состава, но уже плотностью 2, 9 - 3.0 г/см3. Для минералов, представляющих изоморфные ряды (структурное замещение атомов), увеличение или уменьшение плотности пропорционально изменению химического состава. Пример: в изоморфном ряду оливинов от форстерита Mg[SiO4] до фаялита Fe[SiO4] плотность увеличивается от 3, 20 до 4, 35 г/см3. Удельные веса (плотность) минералов определяются в основном двумя способами:
Методику исследования плотности этими методами опишем в отдельной статье. Удельный вес мелких зернышек минерала определяется с помощью так называемого пикнометра или тяжелых жидкостей и весов Вестфаля, описываемых в специальных руководствах. Существует еще несколько менее распространенных методов: Объемный метод. Основан на установлении объема минерала с помощью различных по конструкции объемомеров (волюмометров). Такой метод просто не заменим для определения плотности рыхлых, землистых минералов или легко растворимых минералов выделяемых в форме налетов. Иммерсионный метод. Базируется на подборе тяжелой жидкости с плотностью равной плотности минерала. Уравновешивания в жидкости. Т.е. в жидкости плотностью 2, 5 минералы меньшей плотности будут всплывать, а большей тонуть. Этот метод широко используется в горнодобывающей промышленности для обогащения руды. Зная химический состав минерала можно математически вычислить его плотность по формуле: где P - плотность в г/см3; AW - сумма атомных масс атомов в элементарной ячейке и V – объем элементарной ячейки в нм3. Коэффициент 1, 6602 х 10-24 (значение, обратное числу Авогадро) представляет собой единицу атомной массы, выраженную в граммах, а для перевода объема ячейки в см3 необходимо ее объем в нм3 умножить на 10-21. Для иллюстрации рассчитаем плотность галита; его ячейка содержит 4NaCl и представляет собой кубическую элементарную ячейку с а = 0, 564 нм: Такой расчет часто полезен для проверки результатов химического анализа минералов, с одной стороны, и результатов измерений плотности и размера элементарной ячейки – с другой. Спайность. Спайность – способность минерала раскалываться при ударе или другом механическом воздействии по определенным кристаллографическим плоскостям. Спайность связана со структурой кристалла и характером атомных связей. Вдоль плоскостей спайности силы связи оказываются более слабыми, чем вдоль других направлений. Плоскости спайности всегда обладают высокой плотностью атомов и во всех случаях параллельны возможным граням кристалла. Так, спайность пироксенов и амфиболов также непосредственно связана с их структурой, которая содержит цепочки кремнекислородных тетраэдров. Как видно из рисунков (рис.11.31 и 11.41) спайность возникает по плоскостям между цепочками. Спайность выявляют, прослеживая регулярные системы трещин в прозрачных минералах, таких как флюорит или кальцит, либо ровные отражающие плоскости, образующиеся при раскалывании кристаллов, что наблюдается у полевых шпатов, пироксенов и слюд. Следы плоскостей спайности играют важную роль определяющих направлений при оптическом изучении ксеноморфных зерен под микроскопом, не имеющих хорошо выраженных граней. Степень совершенства проявления спайности исследуемого минерала определяется путем ее сопоставления с данными следующей 5-ступенчатой шкалы:
При раскалывании минералов, лишенных спайности или обладающих плохой спайностью, возникают незакономерные поверхности излома, который по внешнему облику характеризуется как: раковистый (опал), неровный (пирит), ровный (вюртцит), занозистый (актинолит), крючковатый (самородное серебро), шероховатый (диопсид), землистый (лимонит). При обработке камня наличие спайности облегчает получение плоских поверхностей вдоль ее плоскостей, но затрудняет шлифовку и полировку других плоскостей, поскольку при обработке могут возникать трещины спайности. Кроме того, спайность может стать причиной сколов минералов в процессе их использования. Твердость. Под твердостью минерала понимается его сопротивление механическому воздействию более прочного тела. Твердость минерала является важным диагностическим признаком. Существует несколько методов определения твердости. В минералогии действует шкама Мооса. Построенная на основе эталонных образцов, расположенных в порядке увеличения твердости.
Значение шкалы Мооса являются относительными и определены условно, методом царапания. Т.е. кварц оставляет царапину на полевых шпатах (ортоклаз), но не может поцарапать топаз. Процесс определения твердости минерала по шкале Мооса происходит так: если, например апатит (тв. = 5) царапает исследуемый минерал, а при этом сам образец может царапать флюорит (тв. = 4), то твердость образца определяем = 4, 5. Эталоны шкалы Мооса могут заменить следующие предметы: лезвие стального ножа - твердость около 5, 5, напильник - около 7, простое стекло - 5. Точные, научные количественные данные твердоти минералов получают с помощью склерометров, и расчитываю после определения глубины вдавливания алмазной пирамидки в исследуемый образец. Точные показатели твердости для эталонных образцов, такие:
Твердость в кристаллах может быть анизотропной (разной в различных направлениях кристаллической решетки). Характерным примером являются кристаллы дистена, твердость которых на плоскости совершенной спайности вдоль удлинения = 4, 5, а поперек = 6. Прочие физические свойства минералов. Некоторые дополнительные физические свойства минералов применяются для их диагностики. Перечислим основные. Хрупкость. Под хрупкостью понимается свойство минералов крошиться под давлением или при ударе. Например: самородная сера и алмаз - очень хрупкие минералы. Ковкость. Ковкость минералов в том, что они могут быть легко расплющены на тонкие пластинки. Пример: самородное золото, медь и т.п. Гибкость. Гибкость, свойство изгибаться, характерна для многих минералов. Так, гибкие листочки имеют кристаллы молибденита, хлоритов, талька, гидрослюд, но только у обычных слюд (мусковита, биотита и других) листочки в то же время и упругие, - они восстанавливают первоначальное положение при снятии напряжения. Люминисценция. Некоторые минералы при воздействии на них ультрафиолетовых, катодных или рентгеновских лучей могут излучать свет. Один и тот же минерал может люминесцировать разными цветами и обнаруживать люминисценцию разного рода. После снятия возбудителя, по длительности свечения различают: флюорисценцию (свечение прекращается сразу после снятия) и фосфорисценцию (свечение еще продолжается некоторое время). Особенно интенсивную люминисценцию минералов можно видеть в ультрафиолетовых лучах. Например: флюорит светится - фиолетовым цветом, шеелит - голубым, кальцит - оранжево-желтым. Немногие минералы могут люминисцировать при физическом воздействии на них: при нагревании ( термолюминисценция ), при раскалывании ( триболюминисценция ). Портативная ультрофиолетовая лампа. Радиоактивность. Радиоактивностью называется превращение неустойчивых изотопов одного хим. элемента в изотопы другого с излучением элементарных частиц. Радиактивностью обладают минералы, содержащие радиоактивные элементы, в основном уран, радий и торий. Определяют радиактивность при помощи электроскопов, ионизационных камер и др. Действие которых оснавано на определении ионизации воздуха, вызываемой радиоактивным распадом элементов. Электрические свойства. Пироэлектричество - электричество, возникающее на концах кристаллов-диэлектриков в связи с изменением температуры, проявляются только у тех кристаллов, которые не имеют центра симметрии. Самый яркий пример - кристалл турмалина. Пьезоэлектричество - электричество, возникающее на концах кристаллов при растяжении или сжатии. Пьезоэлектричество возможно лишь в кристаллах, имеющие полярные оси, которые нельзя совместить друг с другом имеющимися на данном кристалле элементами симметрии. Пьезоэлектрический эффект имеет обратное свойство, т.е если к кристаллу приложить переменное эл. поле, то его кристаллическая решетка будет сжиматься и растягиваться. Магнитность. Свойство характерно для немногих минералов. Наиболее сильным магнитным свойством обладает магнетит (FeFe2O4), меньшим - пирротин (Fe1-xS). Минералы, обладающие сильным магнетизмом, называются - ферромагнитными. Другие железосодержащие минералы, обладающие более слабым магнетизмом - называются парамагнитными. Минералы, обладающие слабой отрицательной магнитной восприимчивастью (слабо отталкиваются магнитом) - диамагнитными. Некоторые минералы, содержащие железо, приобретают магнитные свойства только после прокаливания в востановительных условиях, другие проявляют их лишь под воздействием эл. поля (пирит). Магнитность мелких зерен минерала проверяют притяжением их к магниту. Оптические свойства минералов. Цвет. Минералы могут иметь самые различные цвета и оттенки. Одни минералы обладают постоянным цветом (азурит - синий, киноварь - кроваво-красный, магнетит - черный), другие (кварц) могут быть различно окрашенными или бесцветными. Цвет минералов в куске. Окрас минералов подразделяется на 3 типа:
На поверхности некоторых минералов имеется пестроокрашенная или радужная окраска приповерхностного слоя - побежалость. Она образуется чаще в результате окисления минералов. Пестрая побежалость синевато-голубоватых оттенков свойственна минералам, содержащим в составе медь. Красновато-коричневая, минералам, содержащим в своём составе железо (пирит). Блеск. Блеск минерала обусловлен отражением от поверхности граней кристалла или излома. Тип и интенсивность блеска зависит, в основном, от характера поверхности и показателя преломления. По блеску минералы делятся на две группы: 1. Минералы с металлическим и металловидным блеском. При этом металлический, напоминает блеск свежего металла, а металловидный - блеск потускневшей поверхности металла. Характерные примеры минералов с металлическим блеском: пирит, галенит. Пример минералов с металловидным блеском: графит, сфалерит. Металлический и металловидный блеск присущ непрозрачным самородным металлам (золото, серебро, медь и др.), многим сернистым соединениям (галенит, халькопирит и др.) и окислам металлов (магнетит, пиролюзит и др.). 2. Минералы с неметаллическим блеском. Неметаллический блеск характерен для свелоокрашенных, зачастую прозрачных минералов. Неметаллический блеск различается: Алмазный. Самый сильный блеск, характерен для минералов - с высоким показателем преломления. Примеры: алмаз, киноварь. Стеклянный. Напоминает блеск от поверхности стекла. Неметаллический блеск присущ прозрачным минералам. Характерен для минералов с невысоким показателем преломления. Примеры: кальцит, кварц. Жирный. Блеск, как от поверхности покрытой пленкой жира. Такой блеск обусловлен взаимным гашением отраженных лучей света от неровной поверхности минерала. Примеры: нефелин, самородная сера. Перламутровый. Напоминает радужные переливы перламутровой поверхности морской раковины. Характерен для минералов с весьма совершенной и совершенной спайностью. Примеры: слюда, гипс. Шелковистый. Присущ минералам с волокнистым строением. Примеры: асбест Матовый или тусклый. Наблюдается и минералов с очень тонкошероховатой поверхностью излома. Примеры: кремень, глина. У некоторых минералов блеск на гранях кристаллов и на изломе различный. Так, например, у кварца на гранях блеск стеклянный, а на изломе — жирный. Тонкие плёнки на несвежей поверхности и налёты посторонних веществ также резко изменяют блеск минерала. Физические свойства минералов имеют большое значение не только для их использования, но и для диагности (определения). Они зависят от химического состава и типа кристаллической структуры. Физические свойства могут представлять собой скалярную величину, т.е постоянны во всех направлениях кристаллической решетки, или быть векторными. К последним, могут у отдельных минералов и их агрегатов, относится твердость, спайность, оптические свойства. 2.Опишите своиства минералов магнетита и ильменита. Магнетит
Другие названия (синонимы): Железная магнитная руда, зигельштейн, магнитный железняк Свойства Сингония: Кубическая Состав (формула): Fe2+Fe3+2O4 Цвет: Чёрный, железно-чёрный Цвет черты (цвет в порошке): Чёрный Прозрачность: Непрозрачный Спайность: Отсутствует (весьма несовершенная) Излом: Неровный, Раковистый Блеск: Жирный, Матовый, Металлический Твёрдость: 5, 5-6, 5 Удельный вес, г/см3: 4, 9-5, 2 Особые свойства: Минерал магнетит обладает сильными магнитными свойствами. Форма выделения Минерал магнетит образует октаэдрические кристаллы, кристаллические сростки и агрегаты, друзы, щётки, плотные зернистые и сплошные массы, вкрапленность в магматических горных породах. Основные диагностические признаки Минерал магнетит обладает сильными магнитными свойствами, притягивается магнитом. Сопутствующие минералы Андрадит, апатит, галенит, гематит, ильменит, кварц, лёллингит, пирит, пирротин, сфалерит, форстерит, халькопирит, хлориты, эпидот Происхождение Магнетит - один из наиболее распространённых оксидных минералов, он встречается в самых разнообразных геологических образованиях. Месторождения / проявления Крупные промышленные месторождения минерала магнетит в России располагаются в Курской Магнитной Аномалии, в Мурманской области (месторожднние Ковдор), на Урале (Магнитогорск). Применение Минерал магнетит является главной рудой на железо.
Ильменит
Происхождение названия: Ильменит назван по месту находки в Ильменских горах на Южном Урале, Россия. Другие названия (синонимы): IMA не рекомендует использовать какие-либо названия минеральных видов кроме официально утверждённых, несмотря на это, в литературе, помимо утвержденного названия ильменит, встречаются: титанистый железняк. Свойства Сингония: Тригональная Состав (формула): Fe2+Ti4+O3 Цвет: Железо-черный до стально-серого Цвет черты (цвет в порошке): Черный, буровато-черный Прозрачность: Непрозрачный Спайность: Отсутствует (весьма несовершенная) Излом: Неровный, Раковистый Блеск: Металлический Твёрдость: 5-6 Удельный вес, г/см3: 4, 72 - измеренный; 4, 789 - вычисленный Особые свойства: Хрупок Форма выделения Ильменит образует толстотаблитчатые кристаллы ромбоэдрического габитуса, реже пластинчатые. Кристаллы богаты простыми формами. Агрегаты зернистые, сплошные; вкрапленные зерна с округлыми краями; пластинчатые выделения в других минералых, возникающие в результате распада твердых растворов. Основные диагностические признаки Для ильменита характерны таблитчатые, " оплавленные кристаллы"; зернистые массы; слабые магнитные свойства; приуроченность к щелочным, реже ультраосновным породам; вторичные продукты изменеия бурого, сероватого цвета. Сопутствующие минералы Ильменит встречается в ассоциации с апатитом, гематитом, магнетитом, пирротином, рутилом, ульвошпинелью. Происхождение Ильменит - акцессорный минерал в щелочных, основных, ультраосновных породах, кимберлитах (магматическое происхождение); карбонатитовое; пегматитовое (щелочные, реже гранитные пагматиты); гидротермальное (редко); метаморфическое (региональный метаморфизм). Ильменит устойчив в поверхностных условиях, поэтому может накапливаться в россыпях. Месторождения / проявления Ильменит - распространенный минерал, известен в России, представлен, как правило, крупными кристаллами (Ильменские горы, Южный Урал; Ловозерский массив, Кольский полуостров); Южной Австралии (Arkaroola Bore, Flinders Ranges и около Bimbowrie); Канаде (Allard Lake, Quebec; Bancroft, Ontario); встречается в Норвегии (Tellnes и Snarum); США, штат Массачусетс (Quincy, Norfolk Co.); Коннектикут (Litchfield, Litchfield Co.); Нью-Йорк (Lake Sanford area, Essex Co.); во Франции (St. Cristophe, Bourg d’Oisans), Швейцарии (Binntal, Valais). Применение Ильменит - руда на титан, является источником для получения феррититана и титановых сплавов. Свойства Сингония: Гексагональная Состав (формула): Be3Al2Si6O18, в виде примесей могут присутствовать Na, K, Li, Rb, Cs; аргон, гелий и молекулы воды. Цвет: Бесцветный, белый, светло-голубой до насыщенно-голубого, голубовато-зелёный, желтовато-зелёный, жёлтый, зелёный, изумрудно-зелёный, от светло-розового до насыщенно-розового, малиновый, красный. Может быть зональным. Окраска берилла связана с элементами примесями, объем которых может достигать 7%. Окраску минерала определяют элементы переходящих периодов: Mr, Cr, Fe, Ti, V. Цвет черты (цвет в порошке): Белый Прозрачность: Прозрачный, Просвечивающий, Непрозрачный Спайность: Несовершенная Излом: Неровный, Раковистый Блеск: Восковой, Жирный, Стеклянный Твёрдость: 7, 5-8 Удельный вес, г/см3: 2, 63-2, 92, зависит от количества щелочей, особенно Cs. Особые свойства: Хрупкий. В кислотах не растворяется. Показатели преломления: No = 1.556-1.602, Ne = 1.562-1.594; дисперсия = 0.014. Плеохроирует. Форма выделения Бериллы образуют длинно- и короткопризматические, игольчатые кристаллы, часто с продольной штриховкой, реже таблитчатые и футляровидные кристаллы, радиально-лучистые агрегаты, друзы, зернистые агрегаты и сплошные массы. Известны кристаллы берилла длиной до нескольких метров. Часто структура граней с фигурами роста и ямками растворения. При сильном растворении кристаллы берилла приобретают " обсосанный" вид с очень глубокими каналами растворения, вытянутыми вдоль l6. Сопутствующие минералы Берилл встречается в ассоциации с арсенопиритом, альбитом, вольфрамитом, касситеритом, кварцем, минералами группы колумбита-танталита, лепидолитом, мусковитом, полевыми шпатами, рутилом, сподуменом, топазом, турмалинами, фенакитом, флогопитом, флюоритом, хризобериллом. Происхождение Магматическое: берилл встречается в редкометалльных гранитах (воробьевит или морганит, ростерит) и гранитных пегматитах (гелиодор, аквамарин, гошенит). Месторождения / проявления Месторождения берилла в мире весьма многочисленны. Применение Берилл является рудой на бериллий. Бериллий используют в атомной технике, а также при производстве различных бериллиевых сплавов, применимых в авиакосмической, автомобильной, нефтегазодобывающей, электротехнической и электронных промышленностях. Сдерживающим фактором в расширении областей применения бериллия является его высокая стоимость и повышенная токсичность, влекущая за собой многочисленные экологические проблемы при его извлечении. Турмалин. Турмалины — подгруппа минералов из группы борсодержащих алюмосиликатов, сложные боросиликаты переменного состава. Название происходит от сингальского слова " турамали" или " торамалли" которое применяется к различным драгоценным камням в Шри-Ланке. Свойства Кристаллы обычно длиннопризматические, в поперечном сечении — сферический треугольник, нередки комбинации нескольких призм, параллельно главной оси — отчётливая продольная штриховка. Плеохроизм турмалина. Двупреломление от − 0, 014 до − 0, 044. Дисперсия 0, 017. Плеохроизм обычно сильный или отчётливый: у красного — тёмно-красный, жёлтый, светло-жёлтый; у коричневого — от тёмно-бурого до бурого; у зелёного — от тёмно- до светло-зелёного; у синего — от тёмно-синего до голубого. Линии спектра поглощения: у красного — 555, 537, 525, 461, 456, 451, 428; у зелёного — 497, 461, 415. Люминесценция обычно слабая, у бесцветного — зеленовато-голубая, у красного — розовато-фиолетовая, у розового, коричневого, зелёного и синего — отсутствует. Цвет турмалинов зависит от их химического состава. Некоторые кристаллы турмалина имеют несколько зон, окрашенных в различные цвета; такие кристаллы называют «полихромными» Встречаются минералы с красной сердцевиной, окаймлённой светло-зелёной, тёмно-зелёной и зелёной зонами (Бразилия)[], с зелёным ядром и красной внешней зоной (ЮАР). Турмалиновый «кошачий глаз» бывает разного цвета. Для кристаллов турмалина характерно проявление пиро- и пьезоэлектричества (они электризуются при нагревании, трении, давлении, причем один конец кристалла заряжается положительно, другой — отрицательно). На кристаллах турмалина было впервые обнаружено явление поляризации света. Из-за разнообразия окраски турмалины при внешнем осмотре можно спутать со многими минералами (аметистом, андалузитом, везувианом, гидденитом, демантоидом, дымчатым кварцем, зелёной шпинелью, изумрудом, перидотом, празиолитом, рубином, хризобериллом, цирконом, цитрином). Условия образования и нахождения турмалина Кристаллы эльбаита (рубеллита). 4 см, Прибайкалье Происхождение эндогенное, высокотемпературное, пегматитовое, метаморфическое, гидротермально-метасоматическое. Большинство месторождений турмалинов связаны с кислыми изверженными породами и распространены во многих гранитах и гранитоидах, где образуется в последней стадии остывания интрузий. Характерны для различных гранитных пегматитов (шерл, индиголит, полихромные турмалины). Встречаются в пневматолито-гидротермальных месторождениях, в полевошпатово-кварцевых, турмалиново-кварцевых жилах совместно с касситеритом, вольфрамитом, бериллом, топазом. Обнаруживается в грейзенах (эльбаит), в высокотемпературных гидротермальных сульфидно-кварцевых жилах и в зонах околожильного изменения вмещающих горных пород. В небольших количествах встречается в контактово-метаморфических породах, связанных с кислыми гранитами, в скарнах, роговиках. Минерал устойчив к физическому выветриванию и переносу и переотложению и поэтому накапливается в россыпях в ассоциации с гематитом, корундом, цирконом, шпинелидами в кварцевых осадках. Месторождения турмалина Огранённые турмалины Месторождения широко распространены и многочисленны. Наиболее известные находятся на Шри-Ланке, Мадагаскаре, в Мозамбике (полихромные и красные турмалины), Бразилии (штаты Минас-Жерайс, Баия), Бирме, Анголе, Австралии, Индии, ЮАР, Канаде (провинция Онтарио), США (штаты Калифорния, Мэн, Колорадо), Италии (о. Эльба), Швейцарии, России (Урал, Забайкалье). На Урале основные месторождения — Липовка, Мурзинка, Сарапулка, Шайтанка, Южаковая. Ювелирный турмалин известен в Афганистане (Нуристан): в месторождениях Дарае-Пич, Канокан, Джабо, Чормакс, Кантива, Манданеша, Цоцум, Муалеви, Папру. Применение
Оценка качества ювелирных камней учитывает бездефектность кристалла и яркий насыщенный цвет. Наибольшей популярностью на ювелирном рынке пользуются ограненные камни, весом более 2 карат. Минералы группы
4.какие минералы в магматических породах называются главными, второстепенными, акцессорными? назовите примеры. Минеральный состав магматических горных пород также разнообразен: полевые шпаты, кварц, амфиболы, пироксены, слюды, в меньшей степени — оливин, нефелин, лейцит, магнетит, апатит и другие минералы. К породообразующим минералам магматических горных пород, на долю которых приходится около 99 % их общего состава относятся: кварц, калиевые полевые шпаты, плагиоклазы, лейцит, нефелин, пироксены, амфиболы, слюды, оливин и др. Среди акцессорных минералов следует указать: циркон, апатит, рутил, монацит, ильменит, хромит, титанит, ортит и другие; иногда присутствуют и рудные минералы (магнетит, хромит, пирит, пирротин и др.). Выделяют также элементы-примеси, которые присутствуют в породах в очень малых количествах (сотые доли процента): литий, бериллий, бор, олово, медь, хром, никель, хлор, фтор и др. Популярное:
|
Последнее изменение этой страницы: 2016-05-28; Просмотров: 1621; Нарушение авторского права страницы