|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра
Чтобы получить теоретическую изотерму адсорбции, описывающую широкую область концентраций, необходимо использование представлений о механизме адсорбции и конкретных моделей. Адсорбция рассматривается как квазихимическая реакция между адсорбатом и адсорбционными центрами поверхности адсорбента. В этом заключается основная идея адсорбционной теории Ленгмюра, которая явилась фундаментальным вкладом в учение об адсорбции. Ограниченность поверхности адсорбента приводит к её адсорбционному насыщению по мере увеличения концентрации распределяемого вещества. Это положение теории Ленгмюра уточняется следующими допущениями: 1) адсорбция локализована (молекулы не перемещаются по поверхности) на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбата; в результате образуется мономолекулярный слой; 2) адсорбционные центры энергетически эквивалентны – поверхность адсорбента эквипотенциальна; 3) адсорбированныемолекулы не взаимодействуют друг с другом. 4) адсорбция обратима. Для получения уравнения изотермы обратимся к основному положению теории Ленгмюра. Примем, что при адсорбции происходит квазихимическая реакция между распределяемым компонентом и адсорбционными центрами поверхности:
где По мере увеличения концентрации (давления) вещества В реакция сдвигается в сторону образования комплекса и свободных адсорбционных центров становится меньше. Константа адсорбционного равновесия равна
В этом соотношении
где А – величина адсорбции вещества В; A¥ - емкость адсорбционного монослоя, или число адсорбционных центров, приходящихся на единицу площади поверхности (или на единицу массы адсорбента); А0 – число оставшихся свободными адсорбционных центров, приходящихся на единицу площади поверхности (или на единицу массы адсорбента). Подставляя уравнения (IX.7) в уравнение (IX.6), получим:
Опуская индекс при обозначении концентрации адсорбата СВ, после простых преобразований окончательно имеем:
Выражение (IX.8) называется уравнением изотермы мономолекулярной адсорбции Ленгмюра. Так как концентрации газов и паров практически пропорциональны парциальным давлениям, то для них изотерма адсорбции Ленгмюра принимает вид:
Необходимо отметить, что константа адсорбционного равновесия в уравнении Ленгмюра характеризует энергию взаимодействия адсорбата с адсорбентом. Чем сильнее это взаимодействие, тем больше константа адсорбционного равновесия. Адсорбционное уравнение Ленгмюра часто представляют относительно степени заполнения поверхности – отношения величины адсорбции А к емкости монослоя А¥
Типичная изотерма адсорбции Ленгмюра показана на рис.20.
Рис.20. Изотерма адсорбции Ленгмюра
Важны экстраполяционные следствия из соотношений (IX.8) – (IX.9). При малых концентрациях или давлениях, когда С ® 0, получаем:
Выражения (IX.11) соответствуют закону Генри: величина адсорбции линейно растет с увеличением концентрации. При больших концентрациях и давлениях, когда КC > > 1и KP> > 1, уравнения (IX.8) – (IX.9) переходят в соотношения:
Соотношения (IX.12) отвечают состоянию насыщения, когда вся поверхность адсорбента покрывается мономолекулярным слоем адсорбата. Экспериментальное определение А¥ позволяет рассчитать удельную поверхность адсорбента (поверхность единицы массы адсорбента):
где А¥ -предельная адсорбция, выражаемая числом молей адсорбата на единицу массы адсорбента; NA – число Авогадро; Экспериментальные результаты по определению изотермы адсорбции обычно обрабатывают с помощью уравнения Ленгмюра, записанного в линейной форме (числитель (IX.8) переносят в знаменатель, а знаменатель – в числитель):
Если обе части уравнения (IX.13) умножить на С, то получим ещё одну форму записи указанного уравнения, дающего линейную зависимость в координатах
Такая линейная зависимость позволяет графически определить оба постоянных параметра (А¥ и К)адсорбционной изотермы. На рис.21 представлена типичная изотерма адсорбции в координатах уравнения (IХ.13а). Экстраполяция зависимости до оси ординат дает отрезок, равный 1/(А¥ K), а тангенс угла наклона прямой к оси абсцисс равен 1/ А¥ ,
Рис.21. Изотерма адсорбции в координатах линейной формы уравнения Ленгмюра (IX.13а) При адсорбции газов из их смесей в соответствии с уравнением изотермы Ленгмюра величины адсорбции суммируются, а концентрация свободных центров A0 является общей для равновесной многокомпонентной системы. Степень заполнения для i-oго компонента составит:
где Pi – парциальное давление i-oго компонента, а Ki – его адсорбционная константа равновесия. Из уравнения (IX.14) следует, что увеличение парциального давления одного компонента подавляет адсорбцию других, и тем сильнее, чем больше его адсорбционная константа равновесия. Все рассмотренные до сих пор уравнения справедливы для мономолекулярной адсорбции, протекающей на адсорбенте с энергетически эквивалентными адсорбционными центрами. Однако реальные поверхности твердых тел, как правило, не обладают такими свойствами. Для приближения к реальным условиям целесообразно рассмотрение возможных распределений адсорбционных центров поверхности адсорбента по энергиям. Приняв экспоненциальное распределение адсорбционных центров по энергиям, в области средних заполнений получается найденное эмпирически уравнение Фрейндлиха:
где К и п – постоянные. Уравнение Фрейндлиха широко используется при обработке экспериментальных адсорбционных данных, в том числе в инженерных расчётах. Чаще всего оно применяется в логарифмической форме
позволяющей построить линейную зависимость lnA – ln P и графически определить оба постоянных параметра K и п. §5. Теория полимолекулярной адсорбции БЭТ Уравнение Ленгмюра можно использовать только при условии, что адсорбция вещества сопровождается образованием мономолекулярного слоя. Это условие выполняется достаточно строго в случае хемосорбции, физической адсорбции газов при небольших давлениях и температурах выше критической (без конденсации на поверхности адсорбента), а также при адсорбции из растворов. Указанное ограничение для применения уравнения Ленгмюра связано не столько с формальным описанием адсорбции, сколько с невозможностью получить правильные значения параметров K и А¥ , соответствующих их физическому смыслу. В большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и влияние поверхностных сил может распространяться на второй, третий и последующие адсорбционные слои. Эта возможность реализуется, когда газы и пары адсорбируются при температурах ниже критической. В этом случае образуются полимолекулярные слои вещества на поверхности адсорбента. Полимолекулярную адсорбцию можно представить как результат вынужденной конденсации пара под действием поверхностных сил. Если в области образования мономолекулярного слоя величина адсорбции существенно замедляет свой рост с увеличением давления пара, то в области давлений, близких к давлению насыщенного пара, она начинает резко возрастать и адсорбция заканчивается объёмной конденсацией пара при P =Р0 (иногда используется обозначение Ps) (рис.22).
Рис.22. Изотермаполимолекулярной адсорбции
Первые попытки получения уравнения изотермы полимолекулярной адсорбции были сделаны ещё Ленгмюром. Современная форма уравнения полимолекулярной адсорбции была предложена Брунауэром, Эмметом и Теллером. В соответствии с начальными буквами фамилий авторов обсуждаемая теория получила название теории БЭТ. В этой теории дополнительным допущением к тем, которые были положены в основу вывода уравнения изотермы Ленгмюра, является представление об образовании на поверхности адсорбента «последовательных комплексов» – адсорбционных центров с одной, двумя, тремя и т. д. молекулами адсорбата. Величина адсорбции компонента В равна
где С – константа уравнения, а P0 – давление насыщенного пара компонента В при данной температуре. Соотношение (IX.16) является основным уравнением обобщенной теории Ленгмюра и называется уравнением полимолекулярной адсорбции БЭТ. С уменьшением давления при P/P0< < 1 уравнение БЭТ превращается в уравнение мономолекулярной адсорбции Ленгмюра, которое при дальнейшем уменьшении давления (P ® 0) переходит в закон Генри. При обработке экспериментальных результатов уравнение БЭТ обычно используют в линейной форме. На теории БЭТ основан стандартный метод измерения удельной поверхности адсорбентов, катализаторов, порошков и других материалов (метод БЭТ). По экспериментальным данным находят величину A¥ , а затем по уравнению (IX.12a) рассчитывают удельную поверхность. В качестве адсорбатов используют инертные газы (азот, аргон, криптон и др.), которые проявляют слабое межмолекулярное взаимодействие на поверхности адсорбента, что находится в соответствии с исходными допущениями теории и обеспечивает достоверность получаемых результатов. Значения площади, занимаемой молекулой адсорбата в заполненном монослое §6. Изотермы адсорбции и поверхностного натяжения растворов ПАВ Поверхностно-активные вещества (ПАВ), молекулы которых имеют дифильное строение и включают большой углеводородный радикал, отличаются высокой поверхностной активностью по отношению к воде, что отражает сильную зависимость поверхностного натяжения водного раствора ПАВ от их концентрации. Большие значения поверхностной активности предполагают пренебрежимо малые концентрации ПАВ в объеме раствора по сравнению с их концентрацией в поверхностном слое, т. е. с величиной их адсорбции на границе раствор – воздух. Подобная зависимость может обнаруживаться и в растворах других веществ на границе с жидкостью или твёрдым телом, например при специфическом взаимодействии с поверхностью. Отмеченная особенность позволяет пренебречь разницей между величиной адсорбции A и величиной гиббсовской адсорбции Г, т. е. будем полагать, что Г » A. Из этого соотношения следует, что для растворов ПАВ все уравнения адсорбции, включающие величину адсорбции A, будут также справедливы, если заменить А на Г. Обратимся к уравнению изотермы адсорбции Лэнгмюра (IХ.8). Учитывая соотношение Г » A, величину адсорбции можно приравнять к её выражению из уравнения Гиббса (IX.3)
После разделения переменных имеем:
Проинтегрируем полученное выражение в пределах от 0 до С и от
так как KdС= d(1 + KС). После интегрирования получим уравнение Шишковского, характеризующее поверхностное натяжение растворов ПАВ в зависимости от концентрации:
Подобную зависимость
Ленгмюр, связав уравнение Гиббса со своим уравнением, определил физический смысл констант эмпирического уравнения Шишковского. Одна из них (a) равна произведению A¥ RT, другая (b) имеет смысл константы адсорбционного равновесия K в уравнении Ленгмюра. Допущения, принятые при выводе уравнения Шишковского, показывают, что это уравнение в отличие от уравнений Гиббса и Ленгмюра справедливо только для поверхностно-активных веществ, обладающих высокой поверхностной активностью. В соответствии с уравнением Шишковского при малых концентрациях ПАВ в растворе поверхностное натяжение снижается резко, но с ростом концентрации степень его снижения уменьшается и Дальнейшее увеличение концентрации ПАВ с большой поверхностной активностью может привести к появлению мицелл в растворе и на межфазной поверхности, что равнозначно возникновению новой фазы (механизм образования мицелл ПАВ рассматривается ниже), поэтому характер изменения величины адсорбции с увеличением концентрации ПАВ становится иным. Популярное: |
Последнее изменение этой страницы: 2016-05-29; Просмотров: 2417; Нарушение авторского права страницы