Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ГЛАВА VIII. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ И АДСОРБЦИЯ



Поверхностное натяжение.

Рассмотрим состояние молекул, находящихся в объеме жидкости и на границе раздела фаз.

Между молекулами существуют силы взаимодействия, иначе называемые силы Ван-дер-Ваальса. Это – силы притяжения на любых расстояниях, за исключением самых малых, когда между взаимодействующими частицами в результате крайнего сближения электронных оболочек атомов начинают преобладать силы отталкивания.

Молекулы, расположенные в объёме конденсированной фазы, симметрично окружены другими такими же молекулами, поэтому равнодействующая сил R = 0.

Совершенно иная ситуация, когда молекулы расположены на поверхности. Со стороны жидкости окружение поверхностных молекул достаточно плотное. По сравнению с жидкостью газовая фаза является сильно разреженной и влиянием находящихся в ней молекул можно пренебречь.

Следствием этого является то, что равнодействующая сил, приложенных к молекулам, расположенным в поверхностном слое, не равна нулю (рис.16).

Сумма равнодействующих сил, приложенных к молекулам, расположенным в поверхностном слое и занимающим единичную площадь, называется внутренним давлением. Оно стремится переместить молекулы с поверхности жидкости в ее объем.

Если необходимо увеличить поверхность, это означает, что мы должны некоторое количество молекул жидкости переместить из объёма на межфазную поверхность. В этом случае потребуется совершить работу для преодоления внутреннего давления, действующего в противоположном направлении.

Количественно затраченная в ходе указанного процесса энергия характеризуется величиной поверхностного натяжения.

Поверхностное натяжение (σ ) – это работа обратимого изотермического образования единицы поверхности.

Так как поверхностное натяжение связано с работой, расходуемой на разрыв межмолекулярных связей, то оно ими и обусловлено. Чем сильнее межмолекулярные связи в данном теле, тем больше его поверхностное натяжение на границе с газовой фазой. Отсюда следует, что поверхностное натяжение меньше у неполярных жидкостей, имеющих слабые межмолекулярные связи, и больше у полярных жидкостей. Большим поверхностным натяжением также обладают вещества, имеющие межмолекулярные водородные связи, например, вода.

 

Рис.16. Состояние молекул, находящихся в объёме жидкости и на границе раздела фаз жидкость/воздух.

Так как поверхностное натяжение обусловлено нескомпенсированным полем межмолекулярных сил на межфазной поверхности, его также можно рассматривать как удельное значение поверхностной энергии. Запишем термодинамическое определение поверхностного натяжения:

(VIII.1)

т. е., поверхностное натяжение есть частная производная от энергии Гиббса по площади поверхности раздела фаз при постоянных температуре, давлении и числе молей компонентов.

Так как объединенное уравнение первого и второго начал термодинамики может быть записано и относительно других термодинамических функций, а именно энергии Гельмгольца F, энтальпии H, и внутренней энергии U, то при соответствующих постоянных параметрах поверхностное натяжение можно также записать как частную производную от любой термодинамической функции по площади межфазной поверхности.

Чаще всего поверхностное натяжение выражают через производную от энергии Гиббса, т. к. условия P = const и Т = const легко осуществимы экспериментально. Принимая во внимание, что поверхностное натяжение относится к характеристикам конденсированных систем, без больших погрешностей можно пользоваться и производной от энергии Гельмгольца (изменение объёма при изменении давления в конденсированных системах мало).

Значения термодинамических функций единицы поверхности не изменяются с изменением площади поверхности для индивидуальных веществ.Это значит, что поверхностное натяжение индивидуальных веществ является в то же время удельной поверхностной энергией Гиббса (энергией Гиббса, приходящейся на единицу площади поверхности), в отличие от общей энергии Гиббса поверхности, которая линейно пропорциональна площади поверхности.

Поскольку поверхностное натяжение определяется энергией, приходящейся на единицу площади, единицами его являются: в системе СИ – Дж/м2 = Н´ м/м2 = Н/м.

В табл. 6 приведены значения поверхностного натяжения некоторых веществ на границе с воздухом, из которой видно, что из жидкостей наибольшим поверхностным натяжением обладает ртуть, s = 473, 5 мДж/м2.

 

Таблица 6. Поверхностное натяжение (удельная поверхностная энергия) некоторых веществ на границе с воздухом

 

Вещество T, К s, мДж/м2 Вещество T, К s, мДж/м2
Гелий (ж) 0, 22 Кварцевое стекло (тв)
Гексан 17, 9 Серебро (ж)
Этанол 22, 1 Медь (ж)
Бензол 28, 2 Медь (тв)
Вода 71, 95 Алюминий (тв)
Ртуть 473, 5 Вольфрам (тв)

 

Следует обратить внимание и на другой физический смысл поверхностного натяжения. Поверхностное натяжение можно выразить силой, направленной тангенциально (параллельно) к поверхности и приходящейся на единицу длины периметра, ограничивающего эту поверхность. Физическая сущность поверхностного натяжения в этом случае проявляется в том, что поверхностные молекулы, обладая избыточной (нескомпенсированной) энергией, стремятся уйти в объём конденсированной фазы и тем самым сжимают поверхность. Некоторой аналогией поверхностного натяжения может служить действие устройства типа блока, показанного на рис.17, которое силу тяжести преобразует в силу горизонтального натяжения (сжатия). Однако такое представление о поверхностном натяжении применимо только к жидкостям, так как одновременно с образованием поверхности молекулы жидкости ориентируются на ней, уплотняются, переходя в равновесное состояние и вызывая тем самым тангенциальное натяжение поверхности.

Рис. 17. Механический аналог сжатия поверхности под действием поверхностного натяжения

 

Наиболее общее и четкое по физическому смыслу представление о поверхностном натяжении как о работе образования единицы поверхности. У тел в твердом состоянии по сравнению с жидким силы межмолекулярного и межатомного взаимодействия больше на величину, определяемую энтальпией плавления (затвердевания). Соответственно они имеют и большее поверхностное натяжение или большую удельную поверхностную энергию (см. табл. 6).

Измерение энергии и силы разрыва межмолекулярных связей лежит в основе многих методов определения поверхностного натяжения тел. К группе методов, предназначенных для определения поверхностного натяжения жидкостей, относятся методы взвешивания (отрыва) капель, продавливания пузырька, отрыва кольца или пластинки. Все они предполагают разрыв жидкости по определенному сечению. При расчете σ используется соотношение

DF = s ´ l (VIII.2)

где DF – вес капли либо сила отрыва кольца или пластины от поверхности жидкости; l – периметр поверхности разрыва.

Определение удельной поверхностной энергии Гиббса (поверхностного натяжения) твердых тел представляет значительно более трудную задачу и методы измерения, как правило, менее точны, чем для жидкостей. Прямые методы (например, расщепление) дают очень приближенные значения поверхностной энергии.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-29; Просмотров: 877; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь