Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ГЛАВА 2 Управление задачами и памятью в операционных системах
Итак, время центрального процессора и оперативная память являются основными ресурсами в случае реализации мультипрограммных вычислений. Оперативная память – это важнейший ресурс любой вычислительной системы, поскольку без неё (как, впрочем, и без центрального процессора) невозможно выполнение ни одной программы. Мы уже отмечали, что память является разделяемым ресурсом. От выбранных механизмов распределения памяти между выполняющимися процессорами очень сильно зависит и эффективность использования ресурсов системы, и её производительность, и возможности, которыми могут пользоваться программисты при создании своих программ. Способы распределения времени центрального процессора тоже сильно влияют и на скорость выполнения отдельных вычислений, и на общую эффективность вычислительной системы. Понятие процесса (задачи) нам уже известно. В данной главе мы не будем стараться разделять понятия процесс (process) и поток (thread), вместо этого используя как бы обобщающий термин task (задача). В других разделах, если специально это не оговаривается, под задачей или процессом следует понимать практически одно и то же. Сейчас же мы будем говорить о разделении ресурса центрального процессора, поэтому термин задача может включать в себя и понятие треда (потока). Итак, операционная система выполняет следующие основные функции, связанные с управлением задачами: ¨ создание и удаление задач; ¨ планирование процессов и диспетчеризация задач; ¨ синхронизация задач, обеспечение их средствами коммуникации. Система управления задачами обеспечивает прохождение их через компьютер. В зависимости от состояния процесса ему должен быть предоставлен тот или иной ресурс. Например, новый процесс необходимо разместить в основной памяти – следовательно, ему необходимо выделить часть адресного пространства. Новый порожденный поток текущего процесса необходимо включить в общий список задач, конкурирующих между собой за ресурсы центрального процессора. Создание и удаление задач осуществляется по соответствующим запросам от пользователей или от самих задач. Задача может породить новую задачу. При этом между процессами появляются «родственные» отношения. Порождающая задача называется «предком», «родителем», а порожденная – «потомком», «сыном» или «дочерней задачей». «Предок» может приостановить или удалить свою дочернюю задачу, тогда как «потомок» не может управлять «предком». Основным подходом к организации того или иного метода управления процессами, обеспечивающего эффективную загрузку ресурсов или выполнение каких-либо иных целей, является организация очерёдей процессов и ресурсов. Очевидно, что на распределение ресурсов влияют конкретные потребности тех задач, которые должны выполняться параллельно. Другими словами, можно столкнуться с ситуациями, когда невозможно эффективно распределять ресурсы с тем, чтобы они не простаивали. Например, всем выполняющимся процессам требуется некоторое устройство с последовательным доступом. Но поскольку, как мы уже знаем, оно не может распределяться между параллельно выполняющимися процессами, то процессы вынуждены будут очень долго ждать своей очерёди. Таким образом, недоступность одного ресурса может привести к тому, что длительное время не будут использоваться и многие другие ресурсы. Если же мы возьмем набор таких процессов, которые не будут конкурировать между собой за неразделяемые ресурсы при параллельном выполнении, то, скорее всего, процессы смогут выполниться быстрее (из-за отсутствия дополнительных ожиданий), да и имеющиеся в системе ресурсы будут использоваться более эффективно. Итак, возникает задача подбора такого множества процессов, что при выполнении они будут как можно реже конфликтовать из-за имеющихся в системе ресурсов. Такая задача называется планированием вычислительных процессов. Задача планирования процессов возникла очень давно – в первых пакетных ОС при планировании пакетов задач, которые должны были выполняться на компьютере и оптимально использовать его ресурсы. В настоящее время актуальность этой задачи не так велика. На первый план уже очень давно вышли задачи динамического (или краткосрочного) планирования, то есть текущего наиболее эффективного распределения ресурсов, возникающего практически при каждом событии. Задачи динамического планирования стали называть диспетчеризацией1. Очевидно, что планирование осуществляется гораздо реже, чем задача текущего распределения ресурсов между уже выполняющимися процессами и потоками. Основное отличие между долгосрочным и краткосрочным планировщиками заключается в частоте запуска: краткосрочный планировщик, например, может запускаться каждые 30 или 100 мс, долгосрочный – один раз за несколько минут (или чаще; тут многое зависит от общей длительности решения заданий пользователей). Долгосрочный планировщик решает, какой из процессов, находящихся во входной очерёди, должен быть переведен в очередь готовых процессов в случае освобождения ресурсов памяти. Он выбирает процессы из входной очерёди с целью создания неоднородной мультипрограммной смеси. Это означает, что в очерёди готовых к выполнению процессов должны находиться – в разной пропорции – как процессы, ориентированные на ввод/вывод, так и процессы, ориентированные на преимущественную работу с центральным процессором. Краткосрочный планировщик решает, какая из задач, находящихся в очерёди готовых к выполнению, должна быть передана на исполнение. В большинстве современных операционных систем, с которыми мы сталкиваемся, долгосрочный планировщик отсутствует. Планирование и диспетчеризация процессов и задач Стратегии планирования Прежде всего следует отметить, что при рассмотрении стратегий планирования, как правило, идёт речь о краткосрочном планировании, то есть о диспетчеризации. Долгосрочное планирование, как мы уже отметили, заключается в подборе таких вычислительных процессов, которые бы меньше всего конкурировали между собой за ресурсы вычислительной системы. Стратегия планирования определяет, какие процессы мы планируем на выполнение для того, чтобы достичь поставленной цели. Известно большое количество различных стратегий выбора процесса, которому необходимо предоставить процессор. Среди них, прежде всего, можно назвать следующие стратегии: ¨ по возможности заканчивать вычисления (вычислительные процессы) в том же самом порядке, в котором они были начаты; ¨ отдавать предпочтение более коротким процессам; ¨ предоставлять всем пользователям (процессам пользователей) одинаковые услуги, в том числе и одинаковое время ожидания. Когда говорят о стратегии обслуживания, всегда имеют в виду понятие процесса, а не понятие задачи, поскольку процесс, как мы уже знаем, может состоять из нескольких потоков (задач). Дисциплины диспетчеризации Когда говорят о диспетчеризации, то всегда в явном или неявном виде имеют в виду понятие задачи (потока). Если ОС не поддерживает механизм тредов, то можно заменять понятие задачи на понятие процесса. Так как эти термины часто используются именно в таком смысле, мы вынуждены будем использовать термин «процесс» как синоним термина «задача». Известно большое количество правил (дисциплин диспетчеризации), в соответствии с которыми формируется список (очередь) готовых к выполнению задач. Различают два больших класса дисциплин обслуживания – бесприоритетные и приоритетные. При бесприоритетном обслуживании выбор задачи производится в некотором заранее установленном порядке без учета их относительной важности и времени обслуживания. При реализации приоритетных дисциплин обслуживания отдельным задачам предоставляется преимущественное право попасть в состояние исполнения. Перечень дисциплин обслуживания и их классификация приведены на рис. 2.1. Запомним о приоритетах следующее: ¨ приоритет, присвоенный задаче, может являться величиной постоянной; ¨ приоритет задачи может изменяться в процессе её решения. Диспетчеризация с динамическими приоритетами требует дополнительных расходов на вычисление значений приоритетов исполняющихся задач, поэтому во многих ОС реального времени используются методы диспетчеризации на основе статических (постоянных) приоритетов. Хотя надо заметить, что динамические приоритеты позволяют реализовать гарантии обслуживания задач. Рассмотрим кратко некоторые основные (наиболее часто используемые) дисциплины диспетчеризации. Самой простой в реализации является дисциплина FCFS (first come – first served), согласно которой задачи обслуживаются «в порядке очерёди», то есть в порядке их появления. Те задачи, которые были заблокированы в процессе работы (попали в какое-либо из состояний ожидания, например, из-за операций ввода/вывода), после перехода в состояние готовности ставятся в эту очередь готовности перед теми задачами, которые ещё не выполнялись. Другими словами, образуются две очерёди (рис. 2.2): одна очередь образуется из новых задач, а вторая очередь – из ранее выполнявшихся, но попавших в состояние ожидание. Такой подход позволяет реализовать стратегию обслуживания «по возможности заканчивать вычисления в порядке их появления». Эта дисциплина обслуживания не требует внешнего вмешательства в ход вычислений, при ней не происходит перераспределение процессорного времени. Существующие дисциплины диспетчеризации процессов могут быть разбиты на два класса – вытесняющие (preemptive) и не вытесняющие (non-preemptive). В первых пакетных ОС часто реализовывали параллельное выполнение заданий без принудительного перераспределения процессора между задачами. В большинстве современных ОС для мощных вычислительных систем, а также и в ОС для ПК, ориентированных на высокопроизводительное выполнение приложений (Windows NT, OS/2, Unix), реализована вытесняющая многозадачность. Можно сказать, что рассмотренная дисциплина относится к не вытесняющим. Рис. 2.2. Дисциплина диспетчеризации FCFS К достоинствам этой дисциплины, прежде всего, можно отнести простоту реализации и малые расходы системных ресурсов на формирование очерёди задач. Однако эта дисциплина приводит к тому, что при увеличении загрузки вычислительной системы растет и среднее время ожидания обслуживания, причем короткие задания (требующие небольших затрат машинного времени) вынуждены ожидать столько же, сколько и трудоёмкие задания. Избежать этого недостатка позволяют дисциплины SJN и SRT. Дисциплина обслуживания SJN (shortest job next, что означает: следующим будет выполняться кратчайшее задание) требует, чтобы для каждого задания была известна оценка в потребностях машинного времени. Необходимость сообщать ОС характеристики задач, в которых описывались бы потребности в ресурсах вычислительной системы, привела к тому, что были разработаны соответствующие языковые средства. В частности, язык JCL (job control language, язык управления заданиями) был одним из наиболее известных. Пользователи вынуждены были указывать предполагаемое время выполнения, и для того, чтобы они не злоупотребляли возможностью указать заведомо меньшее время выполнения (с целью получить результаты раньше других), ввели подсчет реальных потребностей. Диспетчер задач сравнивал заказанное время и время выполнения и в случае превышения указанной оценки в данном ресурсе ставил данное задание не в начало, а в конец очерёди. ещё в некоторых ОС в таких случаях использовалась система штрафов, при которой в случае превышения заказанного машинного времени оплата вычислительных ресурсов осуществлялась уже по другим расценкам. Дисциплина обслуживания SJN предполагает, что имеется только одна очередь заданий, готовых к выполнению. И задания, которые в процессе своего исполнения были временно заблокированы (например, ожидали завершения операций ввода/вывода), вновь попадают в конец очерёди готовых к выполнению наравне с вновь поступающими. Это приводит к тому, что задания, которым требуется очень немного времени для своего завершения, вынуждены ожидать процессор наравне с длительными работами, что не всегда хорошо. Для устранения этого недостатка и была предложена дисциплина SRT (shortest remaining time, следующее задание требует меньше всего времени для своего завершения). Все эти три дисциплины обслуживания могут использоваться для пакетных режимов обработки, когда пользователь не вынужден ожидать реакции системы, а просто сдает свое задание и через несколько часов получает свои результаты вычислений. Для интерактивных же вычислений желательно прежде всего обеспечить приемлемое время реакции системы и равенство в обслуживании, если система является мультитерминальной. Если же это однопользовательская система, но с возможностью мультипрограммной обработки, то желательно, чтобы те программы, с которыми мы сейчас непосредственно работаем, имели лучшее время реакции, нежели наши фоновые задания. При этом мы можем пожелать, чтобы некоторые приложения, выполняясь без нашего непосредственного участия (например, программа получения электронной почты, использующая модем и коммутируемые линии для передачи данных), тем не менее, гарантированно получали необходимую им долю процессорного времени. Для решения подобных проблем используется дисциплина обслуживания, называемая RR (round robin, круговая, карусельная), и приоритетные методы обслуживания. Дисциплина обслуживания RR предполагает, что каждая задача получает процессорное время порциями (говорят: квантами времени1, q). После окончания кванта времени q задача снимается с процессора и он передаётся следующей задаче. Снятая задача ставится в конец очерёди задач, готовых к выполнению. Эта дисциплина обслуживания иллюстрируется рис. 2.3. Для оптимальной работы системы необходимо правильно выбрать закон, по которому кванты времени выделяются задачам. Рис. 2.3. Карусельная дисциплина диспетчеризации (round robin) Величина кванта времени q выбирается как компромисс между приемлемым временем реакции системы на запросы пользователей (с тем, чтобы их простейшие запросы не вызывали длительного ожидания) и накладными расходами на частую смену контекста задач. Очевидно, что при прерываниях ОС вынуждена сохранить достаточно большой объём информации о текущем (прерываемом) процессе, поставить дескриптор снятой задачи в очередь, загрузить контекст задачи, которая теперь будет выполняться (её дескриптор был первым в очерёди готовых к исполнению). Если величина q велика, то при увеличении очерёди готовых к выполнению задач реакция системы станет плохой. Если же величина мала, то относительная доля накладных расходов на переключения между исполняющимися задачами станет большой и это ухудшит производительность системы. В некоторых ОС есть возможность указывать в явном виде величину q либо диапазон её возможных значений, поскольку система будет стараться выбирать оптимальное значение сама. Например, в OS/2 в файле CONFIG.SYS есть возможность с помощью оператора TIMESLICE указать минимальное и максимальное значение для кванта q. Так, например, строка TIMESLICE=32, 256 указывает, что минимальное значение q равно 32 миллисекундам, а максимальное – 256. Если некоторая задача (тред) была прервана, поскольку выделенный ей квант времени q израсходован, то следующий выделенный ему интервал будет увеличен на время, равное одному периоду таймера (около 32 мс), и так до тех пор, пока квант времени не станет равным максимальному значению, указанному в операторе TIMESLICE. Этот метод позволяет OS/2 уменьшить накладные расходы на переключение задач в том случае, если несколько задач параллельно выполняют длительные вычисления. Дисциплина диспетчеризации RR – это одна из самых распространенных дисциплин. Однако бывают ситуации, когда ОС не поддерживает в явном виде дисциплину карусельной диспетчеризации. Например, в некоторых ОС реального времени используется диспетчер задач, работающий по принципам абсолютных приоритетов (процессор предоставляется задаче с максимальным приоритетом, а при равенстве приоритетов он действует по принципу очерёдности) [21]. Другими словами, снять задачу с выполнения может только появление задачи с более высоким приоритетом. Поэтому если нужно организовать обслуживание задач таким образом, чтобы все они получали процессорное время равномерно и равноправно, то системный оператор может сам организовать эту дисциплину. Для этого достаточно всем пользовательским задачам присвоить одинаковые приоритеты и создать одну высокоприоритетную задачу, которая не должна ничего делать, но которая, тем не менее, будет по таймеру (через указанные интервалы времени) планироваться на выполнение. Эта задача снимет с выполнения текущее приложение, оно будет поставлено в конец очерёди, и поскольку этой высокоприоритетной задаче на самом деле ничего делать не надо, то она тут же освободит процессор и из очерёди готовности будет взята следующая задача. В своей простейшей реализации дисциплина карусельной диспетчеризации предполагает, что все задачи имеют одинаковый приоритет. Если же необходимо ввести механизм приоритетного обслуживания, то это, как правило, делается за счёт организации нескольких очерёдей. Процессорное время будет предоставляться в первую очередь тем задачам, которые стоят в самой привилегированной очерёди. Если она пустая, то диспетчер задач начнет просматривать остальные очерёди. Именно по такому алгоритму действует диспетчер задач в операционных системах OS/2 и Windows NT. Популярное:
|
Последнее изменение этой страницы: 2016-05-29; Просмотров: 1253; Нарушение авторского права страницы