Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ПУСКОВЫЕ ОРГАНЫ ДИСТАНЦИОННОЙ ЗАЩИТЫ
а) Функции и типы пусковых реле и требования к ним В односистемных дистанционных защитах и в защитах с одним комплектом дистанционных (измерительных) органов на две зоны необходимы пусковые органы, подготавливающие схему к правильной работе при к. з. Пусковые органы в этих защитах выполняют следующие функции: 1. Пускают реле времени второй, третьей и, если есть, четвертой зон. 2. В схемах с одним комплектом измерительных органов для первой и второй зон, автоматически изменяют сопротивление срабатывания измерительных органов с первой зоны на вторую (см.§ 11-10, б). 3. В односистемных схемах подводят при к. з. к измерительным органам токи и напряжения поврежденных фаз (см. § 11-10, а). 4. Действуют в качестве резервной зоны защиты. В трехсистемных защитах с самостоятельными комплектами измерительных органов для каждой зоны, выполненных с помощью направленных реле сопротивления, специальных пусковых органов не требуется. В этих схемах никаких переключений в цепях измерительных органов не производится. Измерительные органы отстроены от нагрузки. Пуск реле времени осуществляется органами соответствующей зоны. В качестве резервной (третьей) зоны служит дополнительный комплект измерительных органов. В защитах, использующих для определения зоны реле реактивного сопротивления (такие защиты широко применялись раньше в СССР), самостоятельный пусковой орган является обязательным. Реле реактивного сопротивления реагируют на нагрузку и поэтому нуждаются в органе, разрешающем их работу только при к. з. Пусковые органы должны удовлетворять трем основным требованиям. Они должны обладать достаточной чувствительностью при к. з., иметь надежную отстройку от максимальной нагрузки и по возможности не действовать при качаниях. Выполнение этих требований является трудной в техническом отношении задачей. В качестве пусковых реле дистанционной защиты применяются главным образом токовые реле и реле сопротивления. Оба типа пусковых реле должны быть отстроены от нагрузки, что ограничивает чувствительность защиты при к. з., особенно на длинных и сильно загруженных линиях. В связи с этим нашли применение реле сопротивления со смещенной круговой, эллиптической и овальной характеристиками, а также особые блокирующие реле (называемые иногда «шорами» или фазоограничителями) и реле с характеристикой в виде четырехугольника. Блокирующие реле применяются в сочетании с пусковыми реле и позволяют ограничить их действие при перегрузках, что дает возможность повысить чувствительность защиты при к. з. Токовые реле и реле сопротивления реагируют на качания и не полностью отвечают требованиям к пусковым реле. Поэтому защиты с подобными пусковыми реле дополняются блокировками от качаний. Наиболее рациональной характеристикой пускового реле сопротивления является характеристика, показанная на рис. 11-7, е в виде заштрихованного четырехугольника ОАВС, обеспечивающая надежное действие защиты с учетом сопротивления дуги в пределах выбранной зоны действия (участок линии О А). Для обеспечения надежного действия при к. з. характеристика срабатывания реле должна охватывать заштрихованную площадь ОКК'К" (на рис. 11-6, д). При такой характеристике реле не действует при zр > zк.з и поэтому возможность ложной работы защиты при перегрузках и качаниях сводится к минимуму. б) Токовые пусковые реле Токовые пусковые реле, включенные на фазные токи. Токовые реле при большой кратности токов к. з. обладают четкой избирательностью как при двухфазных, так и однофазных повреждениях, потому что в обоих случаях они действуют только на тех фазах, где протекает ток к. з. В защитах от междуфазных к. з. пусковые токовые реле достаточно устанавливать на двух фазах, что позволяет обеспечить их действие при всех видах междуфазных повреждений и необходимую избирательность в односистемных и двухсистемных схемах дистанционных защит. Главный недостаток токового пуска состоит в том, что он реагирует на токи нагрузки и качаний так же, как и на к. з. Ток срабатывания пусковых реле приходится отстраивать от тока максимальной нагрузки. Поэтому в сетях 11О кВ и выше и особенно на длинных электропередачах с большой нагрузкой токовый пуск оказывается недостаточно чувствительным. Токовые пусковые реле проще остальных пусковых устройств, поэтому их следует применять во всех случаях, когда они обеспечивают надежную чувствительность и отстройку от максимальной нагрузки. Наибольшее применение токовый пуск находит в дистанционных защитах сети 35 кВ. Токовые реле обратной последовательности. В некоторых схемах дистанционных защит в качестве пускового органа применяется токовое реле, включенное через фильтр обратной последовательности. Двухфазные к. з. сопровождаются появлением тока обратной последовательности, и реле надежно действует. При трехфазных к. з. I2 = 0, но практически все трехфазные к. з. возникают как однофазные или двухфазные повреждения, переходящие затем в трехфазные. Поэтому чтобы обеспечить пуск защиты от реле обратной последовательности при трехфазных к. з., предусматривается особая схема, фиксирующая (запоминающая) кратковременное или длительное появление I2 в первый момент возникновения повреждения. Эта схема рассмотрена в § 13-4 (рис. 13-4 и 13-5). Преим у щ е с т в о м пуска I2 является недействие его при симметричных перегрузках и качаниях, а также высокая чувствительность при к. з., поскольку Iс.р реле обратной последовательности отстраивается только от Iнб фильтра, имеющего небольшую величину. Недостатком реле I2 является действие при качаниях и нагрузке, если они сопровождаются появлением несимметрии (I2 и U2). в) Пусковые реле сопротивления Схемы включения. Схемы включения реле на ток и напряжение сети должны обеспечивать: надежный пуск защиты при к. з. на защищаемой линии и резервируемом участке сети, наилучшую избирательность поврежденных фаз и стабильность зоны действия. Исходя из этих требований, пусковые реле сопротивления — ненаправленные и направленные, с круговыми и эллиптическими характеристиками включаются на междуфазные напряжения и разность одноименных фаз токов согласно табл. 11-1 или на междуфазные напряжения и ток одной фазы по табл. 11-2. С учетом этого первая схема включения должна применяться как лучшая с точки зрения стабильности зон во всех дистанционных защитах, не требующих избирательного пуска. Контакты пусковых реле соединяются попарно, например ПА и Пв, Пв и Пс, Пс и ПА, как показано на рис. 11-37. При такой схеме в случае двухфазного к. з. цепь пуска создается только одним реле, включенным на напряжение петли к. з. Так, при к. з. между фазами В и С сработает реле Пв, включенное на Uвс и ток Iв, и заблокирует действие реле Пс, которое питается током к. з., протекающим по фазе С, но позволяя ему сработать. Однако при циклической блокировке защита не будет пускаться при трехфазном к. з., когда срабатывают три реле. Поэтому предусматривается, что одно из трех реле, например Пс, блокируется реле Пв только при условии, что не работает реле ПА. Благодаря этому реле Пс будет работать при трехфазном к. з. и блокироваться при двухфазном к. з. на фазах ВС. Во время двухфазного к. з. может сработать и третье реле сопротивления, включенное на ток неповрежденной фазы например, при к. з. на В и С реле, питающееся током А), поскольку напряжение на этом реле также понижается (рис. 11-36). Для устранения этой опасности необходимо выбирать уставки реле так, чтобы они не действовали при токах нагрузки, если питающее реле напряжение снизится до 1, 5 Uф. где Uраб.мин — минимальное рабочее напряжение; Iраб.макc—наибольший ток нагрузки. Чем больше Iраб.макс, тем меньше zс.р и чувствительность пускового реле при к. з. Поэтому на длинных линиях с большими нагрузками, где сопротивления на зажимах реле при повреждениях в конце линии и при максимальной нагрузке близки друг к другу по величине, реле с круговой характеристикой с центром в начале координат оказывается недостаточно чувствительным при к. з. Характеристика ненаправленного реле весьма неудовлетворительна и по условиям качаний. Рабочая область реле охватывает все четыре квадранта комплексной плоскости. Реле действует во время качаний при всех значениях zр.кач< zс.р независимо от угла φ р. Так как на длинных линиях пусковые реле имеют относительно большие сопротивления zc.р, то реле на этих линиях оказываются очень восприимчивыми к качаниям. Таким образом, можно сделать вывод, что ненаправленные реле не могут служить для защиты длинных и сильно нагруженных линий как по условиям чувствительности при к. з., так и по условиям отстройки от качаний. Ненаправленные реле применяются в качестве пусковых органов в сетях 35 кВ и на недлинных и мало загруженных линиях в сети 110 кВ. По сравнению с токовыми пусковыми реле ненаправленное реле сопротивления отличается большей чувствительностью к к. з., так как оно реагирует не только на увеличение тока, но и на снижение напряжения. Пусковые направленные реле сопротивления с круговой характеристикой. Характеристика 2 направленного реле (рис. 11-38) значительно лучше удовлетворяет требованиям, предъявляемым к пусковым реле, чем ненаправленное реле с характеристикой 1. Это объясняется тем, что величина zс.р направленного реле зависит от угла φ р, а рабочая зона характеристики относительно невелика и расположена в основном в первом квадранте комплексной плоскости. Благодаря этому реле обладает, при к. з. большей чувствительностью, чем при нагрузке, и в меньшей степени реагирует на качания. Действительно, при металлических к. з. угол φ р сопротивления на зажимах реле zр.k, равен углу сопротивления линии и составляет 65—80°, т. е. близок к φ м.ч реле. Поэтому при к. з. реле работает с наибольшей чувствительностью и зоной действия zc.р = zс.р макc(вектор АС). В режиме нагрузки с передачей большой активной мощности по защищаемой линии угол сопротивления z" раб.мин меньше, чем при к. з., он колеблется в пределах 10—40°. При этих углах zс.р. реле уменьшается на 20—50% по отношению к zс.р.макс, что следует из чертежа и уравнения срабатывания реле Такое загрубление реле при φ р = φ нагр позволяет допускать большие нагрузки на линии по сравнению с ненаправленным реле. Это наглядно показано на рис. 11-38, где совмещены характеристики направленного и ненаправленного реле сопротивления 1 и 2, обладающие одинаковой чувствительностью при к. з. (вектор АС). Прикачаниях направленное реле сопротивления может действовать, только когда вектор zр = zкач попадает в рабочую зону реле, которая в основном ограничена первым квадрантом. Если zкач находится за пределами первого квадранта, то работа реле невозможна. Таким образом, направленное реле отстроено от качаний значительно лучше, чем ненаправленное. Недостатком направленного реле является мертвая зона по напряжению, так как реле не работает при Uр = 0 или значениях, близких к нему. Этот недостаток при двухфазных к. з. устраняется применением подпитки реле напряжением третьей фазы. Для устранения мертвой зоны при трехфазных к. з. устанавливается токовая отсечка или производится смещение характеристики реле в сторону третьего квадранта, последнее допустимо, поскольку третья зона защиты работает с выдержкой времени. Для устранения мертвой зоны можно применять небольшое смещение характеристики относительно начала координат вдоль оси максимальной чувствительности АС, в сторону IIIквадранта.
Обе характеристики имеют одинаковую зону действия (отрезок АВ) при к. з. с углом φ р = φ м.ч. Но при φ р ≠ φ м.ч реле с эллиптической характеристикой имеют меньшую область действия, чем реле с круговой характеристикой. Поэтому они несколько лучше отстраиваются от нагрузки и имеют меньшую возможность срабатывания при качаниях. Реле с эллиптической характеристикой допускают значительно меньшее переходное сопротивление гп в месте к. з., реле с круговой характеристикой. Это является недостатком эллиптической характеристики, который нужно учитывать при выборе малой оси эллипса. Реле имеет мертвую зону при двухфазных и трехфазных к. з., которая устраняется так же, как и у реле с круговой характеристикой.
г) Реле сопротивления с блокировкой, ограничивающей действие защиты при перегрузке Еще большее улучшение характеристики пускового реле можно получить, применив комбинированный пуск, состоящий из направленного реле сопротивления и блокирующего реле сопротивления смешанного типа (рис. 11-40, а). Характеристика 2 реле смешанного типа выражается уравнением перпендикуляр АМ и имеет постоянное значение. На рис. 11-40, а зона действия этого реле заштрихована. Блокирующее реле отсекает часть характеристики 1 реле сопротивления, ненужную для работы защиты при к. з. Благодаря этому вероятность неправильной работы- при качаниях и перегрузке сводится к минимуму. Сочетанием направленного реле сопротивления и д в у х блокирующих реле, отсекающих правую и левую части характеристики 1, можно достигнуть дальнейшего улучшения характеристики пускового устройства. В качестве блокирующего реле можно использовать обычные реле мощности с углом внутреннего сдвига 60 и 30°. Пусковое реле с характеристикой в виде четырехугольника. Характеристика реле показана на рис. 11-40, б. Площадь четырехугольника АВСД должна быть минимальной, но обеспечивающей работу реле в пределах выбранной зоны действия. Исходя из этого, характеристика реле должна удовлетворять следующим условиям: Для обеспечения направленности действия точка А характеристики должна совпадать с началом координат – точкой О. Прямая ВС должна проходить через точку L, соответствующей концу расчетной зоны действия реле (рис. 11-40, в). Прямая АL представляет характеристику сопротивления защищаемой линии и образует с осью r угол φ л, равный углу полного сопротивления линии zл. Точка С выбирается из условия действия реле при к. з. в конце защищаемой зоны (т. е. в точкеL) при наличии переходного сопротивления zД в месте повреждения. Как указывалось в § 11-11, а,
С учетом угла α, сдвига фаз между векторами к = N - + М и N прямая ВС должна проходить относительно оси r под углом а1 = а + азап, где азап — угол запаса, учитывающий угловую погрешность измерительных трансформаторов и погрешность в срабатывании реле. Сторона СD должна быть смещена относительно отрезка АL на величину Δ z, характеризующую дополнительное сопротивление, обусловленное электрической дугой rД. При приближении места к. з. к точке А ток Ik возрастает, в результате этого rД и Δ z будут уменьшаться. С учетом этого угол β 1 принимается меньше угла защищаемой линии φ л. Сторона АD по величине должна равняться Δ z', которое определяется сопротивлением rД электрической дуги при к. з. в начале линии (точка А), и должна иметь угол α 2 = а + α зап. Сторона АВ располагается под углом β 2 > φ л с таким расчетом, чтобы реле надежно действовало при металлических к. з. на защищаемом участке линии (прямая АL) с учетом погрешности измерительных трансформаторов и реле. Полученная характеристика реле АВСD обеспечивает необходимую чувствительность при к. з. и имеет наилучшую отстройку от нагрузки и качаний по сравнению с другими характеристиками, обладающими равной чувствительностью при к. з. Реле с рассмотренной характеристикой могут быть получены с помощью двух реле: одного — с характеристикой BАD и другого — с BСD, или одного реле на полупроводниковых элементах. Для устранения мертвой зоны и улучшения резервирования при к. з. на длинных электропередачах можно применять смещение характеристики относительно начала координат.
11-13. СХЕМЫ ДИСТАНЦИОННЫХ ЗАЩИТ а) Классификация схем Схемы дистанционных защит можно классифицировать по их назначению, типам дистанционных органов и принципам построения. По назначению схемы подразделяются на схемы защит от междуфазных к. з., от замыканий на землю и от всех видов повреждений. По типу дистанционных органов различаются схемы с дистанционными реле полного реактивного сопротивления. По виду характеристики схемы подразделяются на двухступенчатые и трехступенчатые, и, наконец, по способам построения схемы можно разделить в зависимости от числа дистанционных органов в каждой зоне защиты на три группы: трехсистемные (с тремя дистанционными органами на зону), д в у х с и с т е м н ы е (с двумя дистанционными органами) и односистемные (с одним дистанционным органом на зону). В Советском Союзе применяются главным образом схемы с дистанционными органами, реагирующими на полное сопротивление zР и его угловой сдвиг φ p, в качестве защиты от междуфазных к. з. Дистанционные защиты от замыканий на землю в СССР не применяются, поскольку от этого вида повреждения в сети 110 кВ и выше успешно используются более простые токовые направленные защиты нулевой последовательности со ступенчатой характеристикой. Реактансные защиты вследствие сложности их схем и отсутствия существенных преимуществ распространения в СССР не получили. б) Общие принципы выполнения схем дистанционных защит Дистанционная защита может применяться в качестве основной защиты или резервной. В первом случае она должна выполняться трехступенчатой, обеспечивая посредством первой и второй зоны защиту линии с минимальными выдержками времени и с помощью третьей зоны — резервирование защиты следующего участка. Во втором случае защита выполняется трехступенчатой, если резервная защита должна дублировать основную защиту, и по упрощенному варианту с двумя или одной ступенью, если ее задача сводится к резервированию защиты следующего участка и основной защиты своей линии без соблюдения требования быстродействия. В качестве дистанционных (измерительных) органов в современных схемах защит используются главным образом направленные реле с характеристикой в виде окружности или эллипса, проходящих через начало координат или смещенных относительно него в III и I квадранты. Перспективными являются реле с характеристикой в виде четырехугольника, изображенной на рис. 11-7, е. Как было показано в § 11-12, эти характеристики обеспечивают наибольшую чувствительность при к. з. и лучшую отстройку от токов нагрузки и качаний. Ненаправленные дистанционные органы с круговой характеристикой в сочетании с органами направления мощности применяются в односистемных схемах для защиты сетей 35 кВ. В целях Упрощения для первой и второй зон, как правило, используется один комплект дистанционных органов с переключением уставки с первой на вторую зону (см. § 11-10, б). В схемах дистанционных защит, установленных на участках сети, где возможны качания, при которых защита может сработать неправильно, предусматривается специальное блокирующее устройство (см. § 13-2), исключающее действие защиты в этом режиме. Все реле сопротивления могут неправильно работать при исчезновении напряжения, вызванном неисправностями во вторичных цепях трансформаторов напряжения. Поэтому в схемах предусматривается блокировка (см. § 6-4), снимающая оперативный ток с защиты в случае неисправности в цепях напряжения. При токовых пусковых органах блокировка не ставится, поскольку токовые пусковые органы не позволяют работать защите в нормальном режиме. В этом случае достаточно иметь сигнал об исчезновении напряжения в цепях защиты. В Советском Союзе распространены трехсистемные и односистемные схемы. Трехсистемные защиты отличаются от односистемных большей простотой и четкостью схемы, большей надежностью и быстротой действия вследствие отсутствия в них переключений в цепях тока и напряжения. Трехсистемные схемы. В качестве примера, иллюстрирующего принцип выполнения трехсистемных защит, на рис. 11-41 приведена схема двухступенчатой дистанционной защиты, не предназначенная для резервирования следующего участка сети. Схема имеет три направленных измерительных органа первой зоны РС1 и три таких же органа второй зоны РС2. Измерительные органы жестко включены на междуфазные напряжения и разность токов соответствующих фаз. Поскольку защита выполняется без третьей зоны, а ее дистанционные реле обладают направленностью, отстроены от нагрузки и не требуют никаких переключений в своих цепях, пусковые реле и реле направления мощности становятся излишними, поэтому эти органы в рассматриваемой схеме отсутствуют. Схема оперативных цепей защиты (рис.11-41, а) очень проста. При к. з. в пределах первой зоны дистанционные реле РС1 соответствующих фаз приходят в действие и замыкают цепь выходного промежуточного реле РПВ, последнее срабатывает, подавая импульс на отключение выключателя. При к. з. во второй зоне действуют дистанционные органы РСг, пуская реле времени РВII. По истечении установленной на нем выдержки времени контакты РВII замыкаются и замыкают цепь реле РПВ. При действии защиты выпадают флажки соответствующих указательных реле: РУ1 или РУП и РУВ.
В этой схеме один дистанционный орган РС(3)(КРС-131) служил для определения удаленности к. з. при трехфазных к. з. и второй РС(2) типа КРС-121 — для действия при двухфазных к. з. Цепи тока и напряжения подводились к обоим реле жестко без переключений. В качестве пусковых реле ПО и дистанционного органа третьей зоны использовались направленные реле сопротивления КРС-131. Защита имела блокировку от качаний и блокировку от исчезновения напряжения. Упрощенная схема защиты приведена на рис. 11-42. Односистемные защиты. Завод ЧЭАЗ выпускает односистемную защиту типа ПЗ-1 с реле мощности и сопротивления на выпрямленных токах. Защита предназначена для сети 35 кВ. Она имеет токовые пусковые реле, один дистанционный орган, выполненный по схеме сравнения, на выпрямленном токе и орган направления мощности на кольцевой фазочувствительной схеме. Ток и напряжение к дистанционному органу и органу направления мощности подводятся с помощью промежуточных реле, управляемых токовыми пусковыми реле защиты. Защита имеет три ступени времени. Схема защиты подробно рассматривается в [Л. 81 и 97].
Популярное:
|
Последнее изменение этой страницы: 2016-05-29; Просмотров: 1158; Нарушение авторского права страницы