Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Объединение через теорию струн



Помимо неспособности включить в себя гравитационное взаимодействие, стандартная модель обладает еще одним недостатком — она не дает описания устройства объектов, с которыми работает. Почему природа выбрала именно те частицы и взаимодействия, которые были описаны в предыдущих главах и перечислены в табл. 1.1 и 1.2? Почему 19 параметров, которые описывают количественные характеристики этих компонентов, имеют именно те значения, которые имеют? Ученым не удавалось отделаться от чувства, что количество и свойства этих объектов являются совершенно случайными. Скрывается ли за этими, на первый взгляд абсолютно произвольными компонентами, какой-то более глубокий смысл, или физические свойства мироздания являются просто «игрой случая»?

Стандартная модель сама по себе не способна дать объяснения всем этим фактам, поскольку она принимает список частиц и их свойств как полученные экспериментально входные данные. Как показатели фондового рынка не могут быть использованы для определения ценности портфеля акций, которым вы владеете, без входных данных о ваших начальных капиталовложениях, так и стандартная модель не может быть использована для получения предсказаний без входных данных, содержащих фундаментальные свойства частиц6). После того как экспериментаторы проведут тщательное измерение этих данных, теоретики смогут использовать стандартную модель для поддающихся проверке предсказаний, например, что произойдет, если столкнуть какие-то определенные частицы в ускорителе. Но стандартная модель в той же мере не способна объяснить фундаментальные свойства частиц, перечисленные в табл. 1.1 и 1.2, в какой среднее значение индекса Доу-Джонса не способно ответить на вопрос о начальных капиталовложениях, сделанных десять лет тому назад.

На самом деле, если эксперименты покажут, что в микромире существуют какие-то иные частицы или какие-то дополнительные взаимодействия, то в стандартной модели изменения могут быть легко учтены путем замены списка входных параметров. В этом смысле структура стандартной модели обладает слишком большой гибкостью, чтобы дать объяснение свойствам элементарных частиц: она охватывает целый диапазон различных возможностей.

Теория струн имеет совершенно иной характер. Это теоретическое здание единой и жесткой конструкции. Все входные данные, которые ей необходимы, ограничиваются описываемым ниже единственным параметром, который устанавливает шкалу для проведения измерений. Теория струн способна объяснить все свойства микромира. Чтобы понять это, обратимся сперва к более привычным струнам скрипки. Каждая струна может совершать огромное (на самом деле бесконечное) число различных колебаний, известных под названием резонансных колебаний. Пример таких колебаний показан на рис. 6.1. Это колебания, у которых расстояние между максимумами и минимумами одинаково, и между закрепленными концами струны укладывается в точности целое число максимумов и минимумов. Человеческое ухо воспринимает резонансные колебания как различные музыкальные ноты. Схожие свойства имеют струны в теории струн. Они могут осуществлять резонансные колебания, в которых вдоль длины струн укладывается в точности целое число равномерно распределенных максимумов и минимумов.

 

Рис. 6.1. У скрипичных струн существуют резонансные моды колебаний, на которых между концами струны укладывается целое число максимумов и минимумов

 

Некоторые примеры таких колебаний показаны на рис. 6.2. Основное утверждение теории струн таково. Точно так же, как различные моды резонансных колебаний скрипичных струн рождают различные музыкальные ноты, различные моды колебаний фундаментальных струн порождают различные массы и константы взаимодействия. Поскольку это очень важное утверждение, давайте повторим его еще раз. Согласно теории струн свойства элементарных «частиц» — их массы и константы различных взаимодействий — в точности определяются резонансными модами колебаний, реализуемыми внутренними струнами этих частиц.

Легче всего понять эту ассоциацию для массы частицы. Энергия конкретной моды колебания струны зависит от ее амплитуды — максимального расстояния между максимумами и минимумами, и от длины волны — расстояния между двумя соседними пиками. Чем больше амплитуда и чем короче длина волны, тем больше энергия. Это совпадает с нашими интуитивными представлениями — более интенсивные колебания несут больше энергии, менее интенсивные — меньше. Пара примеров показана на рис. 6.3. Такая картина, опять же, привычна для нас: если коснуться струны скрипки сильнее, звук будет более сильным, слабое прикосновение даст более нежный звук. Согласно специальной теории относительности энергия и масса представляют собой две стороны одной медали: чем больше энергия, тем больше масса и наоборот. Таким образом, в соответствии с теорией струн, масса элементарной частицы определяется энергией колебания внутренней струны этой частицы. Внутренние струны более тяжелых частиц совершают более интенсивные колебания, струны легких частиц колеблются менее интенсивно.

 

Рис. 6.2. Петли теории струн имеют резонансные моды колебаний, похожие на моды резонансных колебаний скрипичных струн. При этом вдоль длины струны укладывается в точности целое число максимумов и минимумов

 

Рис. 6.3. Более интенсивные колебания несут большее количество энергии, менее интенсивные — меньшее

 

Поскольку масса частицы определяет ее гравитационные характеристики, существует прямая связь между модой колебания струны и откликом частицы на действие гравитационной силы. Используя несколько более абстрактные рассуждения, физики установили, что существует аналогичное соответствие между иными характеристиками колебания струны и реакцией на другие взаимодействия. Например, электрический заряд, константы слабого и сильного взаимодействия, которые несет частица, в точности определяются типом ее колебания. Более того, тот же самый принцип справедлив и для самих частиц, переносящих взаимодействия. Фотоны, калибровочные бозоны слабого взаимодействия и глюоны представляют собой всего лишь иные моды колебаний струн. Что особенно важно, характеристики одной из мод колебаний струн в точности совпадают с характеристиками гравитона, гарантируя, что гравитация является неотъемлемой частью теории струн7).

Таким образом, согласно теории струн наблюдаемые характеристики всех элементарных частиц определяются конкретной модой резонансного колебания внутренних струн. Этот взгляд радикально отличается от точки зрения, которой придерживались физики до открытия теории струн, когда считалось, что различия между фундаментальными частицами обусловлены тем, что они «отрезаны от разных кусков ткани». Хотя частицы считались элементарными, предполагалось, что они состоят из различного «материала». Так, например, «материал» электрона имел отрицательный электрический заряд, а «материал» нейтрино был электрически нейтральными. Теория струн радикально изменила эту картину, объявив, что «материал» всего вещества и всех взаимодействий является одним и тем же. Каждая элементарная частица состоит из отдельной струны, — точнее, каждая частица представляет собой отдельную струну — и все струны являются абсолютно идентичными. Различия между частицами обусловлены различными модами резонансных колебаний этих струн. То, что представлялось различными частицами, на самом деле является различными «нотами», исполняемыми на фундаментальной струне. Вселенная, состоящая из бесчисленного количества этих колеблющихся струн, подобна космической симфонии.

Этот краткий обзор показал, каким образом теория струн дает поистине поразительную объединяющую систему. Каждая частица вещества и каждая частица, переносящая взаимодействие, состоит из струны, мода колебания которой дает «дактилоскопический отпечаток» этой частицы. Поскольку каждое физическое событие, процесс или явление на своем наиболее элементарном уровне может быть описано на языке взаимодействия между этими элементарными компонентами материи, теория струн обещает предоставить в наше распоряжение единое, всеобъемлющее, унифицированное описание физического мира — универсальную теорию мироздания.

 

Музыка теории струн

Хотя теория струн покончила с предшествующей концепцией элементарных частиц, лишенных внутренней структуры, расставание со старым языком происходит тяжело, особенно когда он дает точное описание действительности вплоть до наименьших доступных масштабов расстояний. Поэтому, следуя сложившимся традициям, мы будем продолжать говорить об «элементарных частицах», но при этом всегда будем помнить, что в действительности это «то, что выглядит элементарной частицей, но на самом деле представляет собой крошечную колеблющуюся струну». В предшествующем разделе мы предположили, что массы и константы взаимодействия таких элементарных частиц связаны с модами колебаний соответствующих струн. Это приводит нас к следующему выводу: если бы мы смогли точно определить все допустимые резонансные моды колебаний фундаментальных струн, — так сказать, «ноты», которые они могут исполнять, мы смогли бы объяснить наблюдаемые свойства элементарных частиц. Таким образом, теория струн впервые предлагает систему, позволяющую объяснить свойства существующих в природе элементарных частиц.

На данной стадии нужно «взять» струну и «притронуться» к ней всеми возможными способами, чтобы определить возможные моды резонансных колебаний. Если теория струн права, возможные резонансные моды точно воспроизведут наблюдаемые свойства перечисленных в табл. 1.1 и 1.2 частиц вещества и частиц, передающих взаимодействия. Конечно, струны слишком малы, чтобы можно было осуществить такой эксперимент в буквальном смысле слова. Вместо этого мы будем «притрагиваться» к струнам теоретически, используя математические модели. В середине 1980-х гг. многие приверженцы теории струн верили, что соответствующие математические методы способны объяснить все тончайшие детали строения мироздания на самом микроскопическом уровне. Некоторые энтузиасты провозгласили, что, наконец-то, найдена теория всего. Оглядываясь на прошедшее десятилетие, мы видим, что эйфория, порожденная этой верой, была преждевременна. Теория струн имеет задатки стать «теорией всего», но на ее пути остается еще ряд препятствий, не позволяющих определить спектр колебаний струн с точностью, достаточной для сравнения с экспериментальными данными. Поэтому в настоящее время мы не знаем, может ли теория струн объяснить фундаментальные характеристики мироздания, приведенные в табл. 1.1 и 1.2. Как будет показано в главе 9, при определенных обстоятельствах, которые будут четко сформулированы, теория струн приводит к Вселенной, свойства которой находятся в качественном согласии с данными для известных частиц и взаимодействий. Но предоставить детальные количественные характеристики эта теория сегодня еше не в состоянии. Таким образом, хотя в отличие от стандартной модели с ее точечными частицами теория струн способна дать объяснение, почему частицы и взаимодействия имеют те свойства, которые они имеют, мы пока не способны их «выудить». Однако удивительно то, насколько богата теория струн и сколь далеко она простирается. Хотя мы пока не можем детально определить ее свойства, она позволяет проникнуть в суть целого ряда новых вытекающих из нее физических явлений. Мы увидим это ниже.

В следующих главах мы более подробно обсудим имеющиеся проблемы, однако полезно сначала ознакомиться с ними в самых общих чертах. Окружающие нас струны могут иметь самое разное натяжение. Например, шнурки на ботинках обычно натянуты намного слабее, чем струны на скрипке. И те и другие, в свою очередь, имеют гораздо меньшее натяжение, чем струны рояля. Единственным параметром, который требуется для калибровки теории струн, является их натяжение. Как определить это натяжение? Если бы мы могли коснуться фундаментальной струны, мы узнали бы ее жесткость и могли бы определить ее натяжение тем же способом, который используется для других, более привычных струн. Но поскольку фундаментальные струны так малы, мы не можем использовать этот подход, и возникает необходимость в разработке косвенного метода. В 1974 г., когда Шерк и Шварц предположили, что одна из мод колебания струн представляет собой гравитон, они смогли использовать такой косвенный метод и определить натяжение, с которыми оперирует теория струн. Их расчеты показали, что интенсивность взаимодействия, передаваемого колебанием струны, соответствующем гравитону, обратно пропорциональна натяжению струны. А поскольку гравитон передает гравитационное взаимодействие, которое является очень слабым, полученное ими значение натяжения оказалось колоссальным: тысяча миллиардов миллиардов миллиардов миллиардов (1039) тонн, так называемое планковское натяжение. Таким образом, фундаментальные струны являются чрезвычайно жесткими по сравнению с обычными. Этот результат имеет три важных следствия.

 

Три следствия жестких струн

Во-первых, в то время, как струны рояля закреплены, что гарантирует постоянство их длины, для фундаментальных струн подобного закрепления, ограничивающего их размер, нет. Вместо этого чудовищное натяжение струн заставляет петли, которые рассматриваются в теории струн, сжиматься до микроскопических размеров. Детальные расчеты показывают, что под действием планковского натяжения типичная струна сжимается до планковской длины, т.е. до 10–33 см, как отмечалось выше8).

Во-вторых, вследствие такого огромного натяжения типичная энергия колеблющейся петли в теории струн становится чрезвычайно большой. Чтобы понять это, вспомним, что чем больше натяжение струны, тем труднее заставить ее колебаться. Например, заставить колебаться струну скрипки гораздо легче, чем струну рояля. Поэтому две струны, колеблющиеся совершенно одинаковым образом, но натянутые по-разному, будут иметь различную энергию. Струна с большим натяжением будет иметь большую энергию, чем струна с низким натяжением, поскольку для того, чтобы привести ее в движение, потребуется большее количество энергии.

Это говорит о том, что энергия колеблющейся струны зависит от двух вещей: от точного вида колебаний (более интенсивные колебания соответствуют более высокой энергии) и от натяжения струны (более сильное натяжение, опять же, соответствует более высокой энергии). На первый взгляд это описание может привести вас к мысли, что при переходе к более слабым колебаниям, с меньшей амплитудой и с меньшим числом максимумов и минимумов, струна будет обладать все меньшей энергией. Однако, как будет показано в главе 4 (в другом контексте), квантовая механика утверждает, что это рассуждение неверно. Согласно квантовой механике колебания струн, подобно всем другим колебаниям и волноподобным возмущениям, могут иметь только дискретные значения энергии. Грубо говоря, подобно компаньонам из ангара, у которых доверенные им деньги равны произведению целого числа на номинал денежных купюр, энергия, которую несет та или иная мода колебания струны, представляет собой произведение целого числа на минимальный энергетический номинал. Конкретней, этот минимальный энергетический номинал пропорционален натяжению струны (а также числу максимумов и минимумов конкретной моды колебаний), а целочисленный множитель определяется амплитудой моды колебаний.

Ключевым моментом здесь является следующее. Поскольку минимальный энергетический номинал пропорционален огромному натяжению струны, минимальная фундаментальная энергия также будет огромна по сравнению с обычными масштабами физики элементарных частиц. Она будет кратна величине, известной под названием планковская энергия. Чтобы дать представление об этой величине, скажем, что если мы пересчитаем планковскую энергию в массу, используя знаменитую формулу Эйнштейна Е = тс2, полученное значение будет примерно в десять миллиардов миллиардов (1019) раз превышать массу протона. Эта чудовищная по стандартам физики элементарных частиц масса известна под названием планковской массы; она примерно равна массе пылинки или массе колонии из миллиона средних по размерам бактерий. Итак, типичная эквивалентная масса колеблющейся петли в теории струн обычно равна произведению целого числа (1, 2, 3, и т.д.) на планковскую массу. Физики говорят, что в теории струн «естественной» или «характерной» шкалой энергий (или масс) является планковская шкала.

Здесь возникает важный вопрос, имеющий прямое отношение к задаче воспроизведения характеристик частиц в табл. 1.1 и 1.2. Если «естественная» энергетическая шкала теории струн примерно в десять миллиардов миллиардов раз превышает значения энергии и массы протона, как она может использоваться для намного более легких частиц — электронов, кварков, протонов и т. п., — образующих окружающий нас мир?

Ответ снова приходит из квантовой механики. Соотношение неопределенностей гарантирует, что не существует состояния абсолютного покоя. Все объекты испытывают квантовые флуктуации, поскольку в противном случае мы могли бы, в нарушение соотношения Гейзенберга, с абсолютной точностью узнать их местоположение и скорость. Это справедливо и для петель теории струн: независимо от того, насколько спокойной выглядит струна, она всегда в той или иной мере испытывает действие квантовых осцилляции. Замечательный факт, впервые установленный в 1970-х гг., состоит в том, что квантовые осцилляции и обычные колебания струны, которые обсуждались выше и были показаны на рис. 6.2 и 6.3, с энергетической точки зрения взаимно сокращают друг друга. Действительно, согласно квантовой механике энергия квантовых флуктуации струны является отрицательной и уменьшает общую энергию колеблющейся струны на величину, примерно равную планковской энергии. Это означает, что струнные колебания с наинизшей энергией (которая, как мы наивно полагали, должна была равняться планковской энергии) в большинстве своем сокращаются, и в результате остаются колебания с относительной низкой суммарной энергией, массовый эквивалент которой близок к массам перечисленных в табл. 1.1 и 1.2 частиц вещества и частиц, переносящих взаимодействия. Следовательно, именно моды колебаний с наименьшей энергией обеспечивают контакт между теоретическим описанием струн и экспериментом в мире физики элементарных частиц. Например, Шерк и Шварц обнаружили, что мода колебаний, являющаяся кандидатом на роль гравитона, характеризуется полным сокращением энергии частицы, являющейся переносчиком гравитационного взаимодействия, приводя к нулевой массе. Это именно то, что ожидалось для гравитона: сила тяготения распространяется со скоростью света, и только частицы, не имеющие массы, могут двигаться с этой максимальной скоростью. Однако низкоэнергетические моды колебаний в гораздо большей степени являются исключением, чем правилом. Более типичное колебание фундаментальной струны соответствует частице, масса которой в миллиарды миллиардов раз превосходит массу протона.

Из этого следует, что сравнительно легкие фундаментальные частицы табл. 1.1 и 1.2 образуются, в некотором смысле, из тумана, расстилающегося над ревущим океаном высокоэнергетических струн. Даже такая тяжелая частица, как t-кварк, масса которой примерно в 189 раз превосходит массу протона, может возникнуть в результате колебания струны только в том случае, если гигантская собственная энергия струны, равная по порядку планковской энергии, будет сокращена квантовыми флуктуациями с точностью, превышающей один на сто миллионов миллиардов. Выходит так, как если бы вы были участником телеигры Верная цена*) и Боб Баркер дал бы вам десять миллиардов миллиардов долларов и потребовал, чтобы вы купили продукты («сократили» деньги) на всю сумму, оставив только 189 долларов, ни долларом больше или меньше. Потратить такую огромную сумму, да еще с такой точностью, не зная при этом точных цен покупаемых товаров, — эта задача была бы очень тяжела даже для самых ловких из самых квалифицированных покупателей в мире. В теории струн, где средством обращения является энергия, а не деньги, приближенные вычисления с определенностью показали, что подобное сокращение энергии может происходить; однако по причинам, которые будут становиться все более ясными в последующих главах, подтверждение сокращения со столь высоким уровнем точности обычно лежит за пределами возможности современной теоретической физики. Несмотря на это, как было отмечено выше, мы увидим, что многие другие явления теории струн, которые менее чувствительны к таким тонким деталям, могут быть установлены и объяснены с достаточной достоверностью.

Это ведет нас к третьему следствию, имеющему огромное значение в теории струн. Существует бесконечное число мод колебаний струны. Для примера на рис. 6.2 мы показали начало бесконечной последовательности вариантов, характеризующих вероятности колебаний с увеличивающимся числом максимумов и минимумов. Не означает ли это существование бесконечной последовательности элементарных частиц, что находилось бы в явном противоречии с современной ситуацией в экспериментальных исследованиях, показанной на табл. 1.1 и 1.2?

 

*) Старейшая игра на американском телевидении, напоминающая «Поле Чудес» с Леонидом Якубовичем. Боб Баркер более 30 лет является бессменным ведущим этой игры. — Прим. перев.

 

Ответом является «да». Если теория струн верна, каждой из бесконечного множества резонансных мод колебаний струн должна соответствовать элементарная частица. Здесь, однако, есть один важный момент. Высокое натяжение струн гарантирует, что за редким исключением эти моды колебаний соответствуют чрезвычайно тяжелым частицам (исключение составляют колебания с минимальной энергией, которые отличаются почти полным сокращением массы ввиду квантовых флуктуации). Слово «тяжелый» здесь опять же означает «во много раз тяжелее планковской массы». Поскольку самые мощные из существующих ускорителей способны достичь энергий порядка тысячи масс протона, что составляет менее одной миллионной от одной миллиардной планковской энергии, возможность лабораторного изучения этих новых частиц, предсказываемых теорией струн, появится еще нескоро.

Существуют, однако, другие, менее прямые способы поиска таких частиц. Например, энергии при возникновении Вселенной были достаточно высокими, чтобы такие частицы появлялись в изобилии. Вообще говоря, вряд ли можно ожидать, что эти частицы дожили до наших дней, поскольку сверхтяжелые частицы обычно нестабильны и высвобождают свои огромные массы путем последовательного распада на все более легкие частицы, превращаясь, в конце концов, в обычные, относительно легкие частицы окружающего нас мира. Однако существует вероятность того, что такое сверхтяжелое состояние колебаний струны, являющееся реликтом эпохи Большого взрыва, могло дожить до наших дней. Открытие таких частиц, которое будет обсуждаться подробнее в главе 9, стало бы эпохальным событием.

 


Поделиться:



Популярное:

  1. A. Смещение суставной головки через вершину суставного бугорка на передний его скат
  2. F) показывает, во сколько раз увеличивается денежная масса при прохождении через банковскую систему
  3. А. Операция ПХО выполнена через 6 часов после ранения
  4. Алгоритм введения желудочного зонда через рот
  5. Архангел Михаил, пожалуйста, приди сейчас ко мне и обрежь шнуры страха, через которые из меня вытекает энергия и жизненная сила.
  6. Борьба за объединение Грузии в IX-X веках
  7. В каких местах запрещено пешеходу переходить через дорогу?
  8. В ночь на 8 сентября 1514 г. литовская конница переправилась вплавь через Днепр и прикрыла наводку мостов для пехоты. Утром все литовское войско было уже на левом берегу реки.
  9. Введение в пифагорейскую теорию чисел
  10. Взаимодействия между родителями и дитя идут через корни
  11. Войны за объединение Германии
  12. Воспитание в коллективе и через коллектив


Последнее изменение этой страницы: 2016-06-04; Просмотров: 784; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь