Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Полиядерные ароматические углеводороды



Название Структура рКа (ArH2+)
бифенил -5.5
нафталин -4.0
антрацен +3.8
9-метилантрацен +5.7

Из данных табл. 1 можно сделать следующие выводы:

1. Введение метильных групп в бензольное кольцо увеличивает основность арена. Причем, введение второй метильной группы в мета-положение к первой (1, 3-диметилбензол или м-ксилол) увеличивает основность арена в гораздо большей степени, чем ее введение в орто- или пара-положение к уже имеющейся метильной группе (1, 2-и 1, 4-диметилбензолы или орто- и пара-ксилолы). Это обусловлено тем, что в орто- и пара-диметилбензолах лишь одна из метильных групп может находиться в орто- или пара-положении к возникающему в -комплексе геминальному узлу, т.е. лишь одна из групп СН3 эффективно стабилизирует положительный заряд (распределенный в орто- и пара-положениях к геминальному узлу -комплекса).

2. Конденсированные ароматические системы более основны, чем бензол. Это связано с уменьшением их ароматического характера.

Подобного рода -комплексы были зафиксированы при низкой температуре для многих реакций электрофильного замещения в ароматическом кольце. Ниже приводятся некоторые наиболее типичные примеры.

 

Стабильные при комнатной температуре бензолониевые ионы получены в случае 1, 3, 5-трис(диалкиламино)бензолов:

Таким образом, устойчивость - комплексов должна быть большей при наличии в ароматическом ядре электронодонорных заместителей, участвующих в делокализации положительного заряда, а также при наличии комплексных противоионов типа BF4- или SbF6- (слабые основания).

Обобщенный механизм электрофильного ароматического замещения

Медленной стадией большинства SEAr - реакций является образование -комплекса (аренониевого иона), поэтому кинетический изотопный эффект водорода в большинстве случаев не проявляется. В этой главе мы рассмотрим общий механизм реакций этого типа, а в следующей главе механизм реакций с изотопным эффектом.

Поскольку и - комплексы, и - комплексы реально существуют, можно полагать, что оба комплекса образуются в качестве неустойчивых интермедиатов во всех реакциях электрофильного ароматического замещения.

На диаграмме изображены два -комплекса - первый 1 на координате реакции находится до -комплекса, а второй 2-после -комплекса. Комплекс 1 образуется между исходным ареном и реагентом Е+, а комплекс 2 - между продуктом замещения (ArE) и протоном. Самый высокий энергетический барьер связан с образованием -комплекса.

-Комплексы можно рассматривать как " комплексы с переносом заряда". Считается, что связь в них возникает как следствие частичного переноса электрона от арена к электрофилу.

Чтобы выяснить, какая стадия электрофильного замещения - образование -комплекса или образование -комплекса - определяет наблюдаемую скорость процесса, обычно изучают влияние заместителей в бензольном кольце на скорость исследуемой реакции и сравнивают его с влиянием этих же заместителей на рКа аренов (табл.1) и на константы устойчивости -комплексов. Если лимитирующей стадией является образование -комплекса, то переходное состояние " похоже" на -комплекс, скорость электрофильного замещения будет линейно коррелировать с рКа аренов. Если лимитирующей стадией является образование -комплекса, то переходное состояние " похоже" на -комплекс, и скорость замещения будет коррелировать с устойчивостью -комплексов.

В табл. 2 приведены относительные значения основности аренов, констант устойчивости -комплексов и констант скоростей бромирования и хлорирования метилзамещенных бензолов в 85% уксусной кислоте.

Таблица 2

Сравнение основности полиметилбензолов (по данным табл.1) и устойчивости -комплексов с относительными скоростями их бромирования (Br2 в 85% уксусной кислоте) и хлорирования (Cl2 в уксусной кислоте) при 25оС. В качестве стандартного соединения взят бензол.

      lg(Каренбензол)
Заместители в бензольном кольце Относительная устойчивость -комплексов с HCl ( pK ) Относительная основность аренов pKа (табл. 1) для реакции с бромом для реакции с хлором
нет
CH3 0.18 2.9 2.78 -
1, 2-(CH3)2 0.26 3.9 3.72 3.62
1, 3-(CH3)2 0.31 6.0 5.71 5.6
1, 4-(CH3)2 0.22 3.5 3.4 3.3
1, 2, 3-(CH3)3 0.38 6.4 6.22 5.9
1, 2, 4-(CH3)3 0.35 6.3 6.18 5.84
1, 3, 5-(CH3)3 0.42 8.8 8.28 -
1, 2, 3, 4-(CH3)4 0.43 7.3 7.04 -
1, 2, 3, 5-(CH3)4 - 9.3 8.62 8.68
1, 2, 4, 5-(CH3)4 - 7.0 6.45 -
(CH3)5 0.44 9.6 8.91 8.86

Данные табл.2 показывают, что скорости реакций бромирования и хлорирования при введении метильных групп увеличиваются почти в той же степени, в которой происходит возрастание основности арена (рис.2). Это означает, что -комплекс является хорошей моделью переходного состояния для рассматриваемых реакций.

В то же время, устойчивость -комплексов аренов с HCl очень мало зависит от числа метильных заместителей, тогда как скорость хлорирования и бромирования увеличивается в 108раз. Следовательно, -комплекс не может служить моделью переходного состояния в этих реакциях.

14 Заместители 1 и 2 рода
риентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.

Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства: -F (+M< –I), -Cl (+M< –I), -Br (+M< –I).
Являясь орто-пара-ориентантами, они замедляют электрофильное замещение. Причина - сильный –I-эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.

Ориентанты 2-го рода (мета-ориентанты) направляют последующее замещение преимущественно в мета-положение.
К ним относятся электроноакцепторные группы:

-NO2 (–M, –I); -COOH (–M, –I); -CH=O (–M, –I); -SO3H (–I); -NH3+ (–I); -CCl3 (–I).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто- и пара-положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета-положении, где электронная плотность несколько выше.
Пример:

Ориентант 2-го рода

Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.

Таким образом, легкость электрофильного замещения для соединений (приведенных в качестве примеров) уменьшается в ряду:

толуол C6H5CH3 > бензол C6H6 > нитробензол C6H5NO2.

первого рода- OH, OR, OCOR, SH, SR, NH2, NHR, NR2, АЛКИЛЫ, ГАЛОГЕНЫ. второго рода- SO3H, NO2, COOH, COOR, CN, CF3, NR3, CHO. где R- скорей всего радикал

15 Правила ориентации в бензольном кольце, в многоядерных ароматических системах
Важнейшим фактором, определяющим химические свойства молекулы, является распределение в ней электронной плотности. Характер распределения зависит от взаимного влияния атомов.

В молекулах, имеющих только s-связи, взаимное влияние атомов осуществляется через индуктивный эффект. В молекулах, представляющих собой сопряженные системы, прояв­ляется действие мезомерного эффекта.

Влияние заместителей, передающееся по сопряженной си­стеме p-связей, называется мезомерным (М) эффектом.

В молекуле бензола p-электронное облако распределено рав­номерно по всем атомам углерода за счет сопряжения. Если же в бензольное кольцо ввести какой-нибудь заместитель, это равно­мерное распределение нарушается, и происходит перераспреде­ление электронной плотности в кольце. Место вступления второ­го заместителя в бензольное кольцо определяется природой уже имеющегося заместителя.

Заместители подразделяют на две группы в зависимости от проявляемого ими эффекта (мезомерного или индуктивного): электронодонорные и электроноакцепторные.

Электронодонорные заместители проявляют +М и +I-эффект и повышают электронную плотность в сопряженной системе. К ним относятся гидроксильная группа -ОН и аминогруппа -NH2. Не­поделенная пара электронов в этих группах вступает в общее со­пряжение с p-электронной системой бензольного кольца и увеличивает длину сопряженной системы. В результате электронная плотность сосредотачивается в орто- и пара-положениях.

Алкильные группы не могут участвовать в общем сопряжении, но они проявляют +I-эффект, под действием которого происходит аналогичное перераспределение p-электронной плотности.

Электроноакцепторные заместители проявляют -М-эффект и снижают электронную плотность в сопряженной системе. К ним относятся нитрогруппа -NO2, сульфогруппа —SO3H, альдегидная —СНО и карбоксильная —СООН группы. Эти заместители образуют с бензольным кольцом общую сопряженную систему, но общее электронное облако смещается в сторону этих групп. Таким образом, общая электронная плотность в кольце уменьшается, причем меньше всего она уменьшается в метаположениях:

Полностью галогенированные алкильные радикалы (напри­мер. - ССl3) проявляют -I-эффект и также способствуют понижению электронной плотности кольца.

Закономерности преимущественного направления замещения в бензольном кольце называют правилами ориентации.

Заместители, обладающие +I-эффектом или +M-эффектом, способствуют электрофильному замещению в орто- и пара-положения бензольного кольца и называются заместителями (орнентаптами) первого рода.

-СН3 -ОН -NH2 -CI (-F, -Вr, -I)
+I +M, -I +M, -I +М, -I

Заместители, обладающие -I-эффектом или - M-эффектом, направляют электрофильное замещение в мета-положения бензольного кольца и называются заместителями (орнентаптами) второго рода:

-S03H -ССl3 -М02 -СООН -СН=О
- М -I -М, -I -М -М

Например, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и ортоположения:

Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

Помимо ориентирующего действия, заместители оказывают влияние и на реакционную способность бензольного кольца: ориентанты 1-го рода (кроме галогенов) облегчают вступление второго заместителя; ориентанты 2-го рода (и галогены) затрудняют его.

Применение. Ароматические углеводороды - важнейшее сырье для синтеза ценных веществ. Из бензола получают фенол, анилин, стирол, из которых, в свою очередь, получают фенол-формальдегидные смолы, красители, полистирол и многие другие важные продукты.

 

16 Номенклатура, изомерия, строения спиртов, фенолов
Галогенопроизводные углеводородов являются продуктами замещения атомов водорода в углеводородах на атомы галогенов: фтора, хлора, брома или йода. 1. Строение и классификация галогенопроизводных Атомы галогенов связаны с атомом углерода одинарной связью. Как и другие органические соединения, строение галогенопроизводных может быть выражено несколькими структурными формулами,: бромэтан (этилбромид) Классифицировать галогенопроизводные можно несколькими способами: 1) в соответствии с общей классификацией углеводородов (т.е. алифатические, алициклические, ароматические, предельные или непредельные галогенопроизводные) 2) по количеству и качеству атомов галогенов 3) по типу атома углерода, к которому присоединён атом галогена: первичные, вторичные, третичные галогенопроизводные. 2. Номенклатура По номенклатуре ИЮПАК положение и название галогена указывается в приставке. Нумерация начинается с того конца молекулы, к которому ближе расположен атом галогена. Если присутствует двойная или тройная связь, то именно она определяет начало нумерации, а не атом галогена: 3-бромпропен 3-метил-1-хлорбутан 3. Изомерия Cтруктурная изомерия: Изомерия положения заместителей 2-бромбутан 1-бромбутан Изомерия углеродного скелета 1-хлорбутан 2-метил-1-хлорпропан Пространственная изомерия: Стереоизомерия может проявляться при наличии четырёх разных заместителей у одного атома углерода (энантиомерия) или при наличии разных заместителей при двойной связи, например: транс-1, 2-дихлорэтен цис-1, 2-дихлорэтен 17.вопрос: Галогенопроизводные углеводородов: физические и химические свойства.механизмы реакций нуклеофильного замещения (sn1 и sn2) и элиминирования (Е1 и Е2)Фреоны: строение свойство и приминение. Физические и биологические свойства Температуры плавления и кипения повышаются в ряду: R-Cl, R-Br, R-I, а также при увеличении количества атомов углерода в радикале: Зависимость температуры кипения алкилгалогенидов от количества атомов углерода в цепи для хлор-, бром-, йодалканов Галогенопроизводные являются гидрофобными веществами: они плохо растворяются в воде и хорошо растворяются в неполярных гидрофобных растворителях. Многие галогенопроизводные используются как хорошие растворители. Например, хлористый метилен (CH2Cl2), хлороформ (CHCl3), четырёххлористый углерод (CCl4) используются для растворения масел, жиров, эфирных масел. Химические свойства Реакции нуклеофильного замещенияАтомы галогенов довольно подвижны и могут замещаться под действием разнообразных нуклеофилов, что используется для синтеза разнообразных производных: Механизм реакций нуклеофильного замещенияВ случае вторичных и первичных алкилгалогенидов, как правило, реакция идёт как бимолекулярное нуклеофильное замещение SN2: SN2 реакции являются синхронными процессами – нуклеофил (в данном случае OH-) атакует атом углерода, постепенно образуя с ним связь; одновременно с этим постепенно разрывается связь С-Br. Уходящий из молекулы субстрата бромид-ион в называется уходящей группой или нуклеофугом.В случае SN2 реакций скорость реакции зависит от концентрации и нуклеофила, и субстрата: v = k [S] [Nu] v – скорость реакции, k- константа скорости реакции [S] – концентрация субстрата (т.е. в данном случае алкилгалогенида[Nu] – концентрация нуклеофила В случае третичных алкилгалогенидов нуклеофильное замещение идёт по механизму мономолекулярного нуклеофильного замещения SN1: трет-бутанол трет-бутилхлорид В случае SN1 реакций скорость реакции зависит от концентрации субстрата и не зависит от концентрации нуклеофила: v = k [S].По таким же механизмам идут реакции нуклеофильного замещения и в случае спиртов и во многих других случаях. Элиминирование галогеноводородов может осуществляться по 3 основным механизмам: E1, E2 и E1cb. Алкилгалогенид диссоциирует с образованием карбокатиона и галогенид-иона. Основание (B: ) отрывает от образующегося карбокатиона протон с образованием продукта – алкена: Механизм E1 Субстрат карбокатион продукт Механизм E2.В этом случае отрыв протона и галогенид-иона происходит синхронно, т. е. одновременно: Фреоны (хладоны) — техническое название группы насыщенных алифатических фторсодержащих углеводородов, применяемых в качестве хладагентов, пропеллентов, вспенивателей, растворителей Физические свойства — бесцветные газы или жидкости, без запаха. Хорошо растворимы в неполярных органических растворителях, очень плохо — в воде и полярных растворителях. Применение Используется в качестве рабочего вещества — хладагента в холодильных установках. Как выталкивающая основа в газовых баллончиках. Применяется в парфюмерии и медицине для создания аэрозолей. Применяется в пожаротушении на опасных объектах (например, электростанции, корабли и т. д.) Химические свойства Фреоны очень инертны в химическом отношении, поэтому они не горят на воздухе, невзрывоопасны даже при контакте с открытым пламенем. Однако при нагревании фреонов свыше 250 °C образуются весьма ядовитые продукты, например фосген COCl2, который в годы первой мировой войны использовался как боевое отравляющее вещество. CFH3 фтормета CF2H2 дифторметан CF3H трифторметан CF4 тетрафторметан итд 17вопрос.общее представление о галогенопроизводных ароматических углеводородов и пестицидах на их основе.Спирты и фенолы: классификация, строение ……. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ (АРЕНЫ).Типичными представителями ароматических углеводородов являются производные бензола, т.е. такие карбоциклические соединения, в молекулах которых имеется особая циклическая группировка из шести атомов углерода, называемая бензольным или ароматическимядром.Общая формула ароматических углеводородов CnH2n-6. C6Н6 соед называется бензолом. Фенолы – производные ароматических углеводородов, в молекулах которых гидроксильная группа (- ОН) непосредственно связана с атомами углерода в бензольном кольце. Классификация фенолов Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле: Изомерия и номенклатура фенолов Возможны 2 типа изомерии: изомерия положения заместителей в бензольном кольце Строение молекулы СПИРТЫ Спиртами называют производные углеводородов, содержащие группу (или несколько групп) -ОН, называемую гидроксильной группой или гидроксилом. По числу гидроксильных групп, содержащихся в молекуле, спирты делятся на одноатомные (с одним гидроксилом), двухатомные (с двумя гидроксилами), трехатомные (с тремя гидроксилами) и многоатомные. ОДНОАТОМНЫЕ СПИРТЫ Общая формула: CnH2n+1-OH Простейшие представители: МЕТАНОЛ (древесный спирт) СН3ОН – жидкость (tкип=64, 5; tпл=-98; ρ = 0, 793г/см3) Метанол СН3ОН используют как растворитель Этанол С2Н5ОН – исходное соединение для получения ацетальдегида, уксусной кислоты Получение этанола: брожение глюкозы C6H12O6 дрожжи → 2C2H5OH + 2CO2↑ · гидратация алкенов CH2=CH2 + HOH t, kat-H3PO4→ CH3-CH2-ОH Свойства спиртов: Спирты горят в кислороде и на воздухе, как и углеводороды: 2CH3OH + 3O2 t→ 2CO2 + 4H2O + Q

17 Кислотные свойства спиртов, фенолов
Кислотные свойства фенолов

Несмотря на то, что фенолы по строению подобны спиртам, они являются намного более сильными кислотами, чем спирты. Для сравнения приведем величины рКа в воде при 25оС для фенола (10, 00), для циклогексанола (18, 00). Из этих данных следует, что фенолы на восемь и более порядков по кислотности превосходят спирты.

Диссоциация спиртов и фенолов представляет собой обратимый процесс, для которого положение равновесия количественно характеризуется величиной разности свободных энергий Gо продуктов и исходных веществ. Для определения влияния строения субстрата на положение кислотно-основного равновесия необходимо оценить разницу энергий между кислотой ROH и сопряженным основанием RO-. Если структурные факторы стабилизируют сопряженное основание RO- в большей степени, чем кислоту ROH, константа диссоциации возрастает и рКа, соответственно уменьшается. Напротив, если структурные факторы стабилизируют кислоту в большей степени, чем сопряженное основание, кислотность уменьшается, т.е. рКа возрастает. Фенол и циклогексанол содержат шестичленное кольцо и поэтому структурно похожи, но фенол в 108 раз более сильная ОН-кислота по сравнению с циклогексанолом. Это различие объясняется большим +М эффектом О- в феноксид-ионе. В алкоголят-ионе циклогексанола отрицательный заряд локализован только на атоме кислорода и это предопределяет меньшую стабильность алкоголят-иона по сравнению с феноксид-ионом. Феноксид-ион относится к типичным амбидентным ионам, т.к. его отрицательный заряд делокализован между кислородом и атомами углерода в орто- и пара- положениях бензольного кольца. Поэтому для феноксид-ионов, как амбидентных нуклеофилов, должны быть характерны реакции не только с участием атома кислорода, но и с участием атома углерода в орто- и пара-положениях в бензольном кольце. Влияние заместителя в бензольном кольце на кислотность фенолов согласуется с представлениями об их электронных эффектах. Электронодонорные заместители понижают, а электроноакцепторные - усиливают кислотные свойства фенолов. В таблицах 1 и 1а приведены данные по кислотности некоторых фенолов в воде при 25оС.

Таблица 1.

Величины рКа орто-, мета- и пара-замещенных фенолов в воде при 25оС

Заместитель орто мета пара
H 10.00 10.00 10.00
CH3 10.29 10.09 10.26
C(CH3)3 10.62 10.12 10.23
C6H5 10.01 9.64 9.55
OCH3 9.98 9.65 10.21
COOC2H5 9.92 9.10 8.34
F 8.73 9.29 9.89
Cl 8.56 9.12 9.41
Br 8.45 9.03 9.37
I 8.51 9.03 9.33
HCO 8.37 8.98 7.61
CN 6.86 8.61 7.97
NO2 7.23 8.36 7.15

Таблица 1а

Величины рКа некоторых полизамещенных фенолов и нафтолов

пентахлорфенол 5.26
пентафторфенол 5.5
1-нафтол 9.39
2-нафтол 9.63
2, 4-динитрофенол 4.07
2, 4, 6-тринитрофенол 0.42

 

 

18 Реакции Sе в спирах, фенолах
19 Реакция Sn2 в спирах, фенолах
20 Реакции бензольного ядра в фенолах и ароматических спиртах
21 Номенклатура, изомерия, строения карбонильных соединений



Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-05; Просмотров: 900; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.039 с.)
Главная | Случайная страница | Обратная связь