Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вычитающий последовательный счётчик



Триггеры данного счетчика срабатывают по заднему фронту. Для реализации операции вычитания счетный вход старшего разряда подключается к инверсному выходу соседнего младшего разряда. Предварительно триггеры устанавливают в состояние лог.1 (111). Работу данного счетчика показывает временная диаграмма на рис. 4.

Рис. 1 Последовательный вычитающий счетчик

Рис. 2 Временная диаграмма последовательного вычитающего счетчика

 


Сумматор - устройство, выполняющее операции арифметического сложения над двоичными числами. Где-то здесь рассматривалисьматематические операции над двоичными числами, где говорилось о том, что сумма двух нулей есть нуль, сумма нуля и единицы есть единица, сумма двух единиц есть нуль. Одноразрядный цифровой сумматор имеет три входа: два входа слагаемых и вход переноса (от предыдущего сумматора). При этом правила сложения чуток усложняются. Одноразрядный сумматор обозначается так:


Рис. 1 - Одноразрядный цифровой сумматор

Сумматор имеет входы А и В - слагаемые, С - вход переноса, S - выход суммы, Р - выход переноса. Табличка истинности:

Входы Выходы
Слагаемые Вход переноса Сумма Выход переноса
А B C S P

На выходе S представляется сумма сложения трех переменных - А, В, С. При переполнении сумматора, т. е. когда в результате сложения формируется единица в старшем разряде выходного числа, на выходе переноса Р формируется уровень лог. 1, который подается на вход переноса С следующего сумматора. В принципе, старшим разрядом суммы является выход переноса Р. В целом работу сумматора полностью иллюстрирует таблица. Из таких одноразрядных сумматоров составляются многоразрядные сумматоры (обычно 4-х разрядные), которые бывают последовательного и параллельного действия. Сумматоры последовательного действия обладают более низким быстродействием.

Вычитатель

Со сложением двоичных чисел все понятно. Как же осуществить на микросхемах-сумматорах операции вычитания двоичных чисел? Допустим необходимо выполнить вычитание: 11 - 5 = 6. В двоичных эквивалентах произведем операцию сложения числа 1011 (число 11) иобратный код числа 5, равный 1010 (прямой код 0101). Итак:

 

Если отбросить единицу в старшем (пятом) разряде, то получится код 0101, который соответствует числу 5. Но это не число 6. Значит к результату необходимо прибавить единицу. Кстати, операция увеличения какого-либо числа на единицу называется инкрементом, уменьшения на единицу - декрементом. На рисунке 2 показана схема четырехразрядного вычитателя.

 

Рис. 2 - 4-х разрядное устройство вычитания

Инверторы микросхемы DD1 формируют обратный код числа В. Число А поступает на входы А1-А4 сумматора DD2, обратный код числа В - на входы В1-В4 сумматора. На вход переноса Р0 подан уровень лог. 1, что обеспечивает прибавление к результату сложения единицы (т. е. инкремент результата). На выходах S1-S4 сумматора в итоге получается разность между числами А и В.

Десятичный сумматор

Чаще приходится суммировать десятичные числа. Ниже на рисунке приведена схема сумматора двоично-десятичных чисел на основе двоичных сумматоров.

 

Рис. 3 - Сумматор двоично-десятичных чисел

Операцию сложения выполняет сумматор DD1. При сумме большей или равной десяти на выходе микросхемы DD2, которая является схемой сравнения входов, формируется сигнал переноса Р10. На второй вход (Y1-Y4) микросхемы DD2 подается двоичный эквивалент числа 9 (1001). Сумматор DD3 осуществляет десятичную коррекцию результата суммирования. При отсутствии сигнала переноса на выходе микросхемы DD3 повторяется код числа, который был на выходе DD1, поскольку на входы В поданы лог. 0. При наличии сигнала переноса Р10=1 на входах В2-В3 устанавливаются лог. 1, что соответствует коду числа 6. Допустим есть числа А=8 и В=4. На выходе сумматора DD1 появляется код числа 12 (8+4=12). На выходе DD2 формируется сигнал переноса, сумматор DD3 выполняет операцию 12+6=18. Числу 18 соответствует код 10010. На выходах S сумматора DD3 устанавливается код 0010 (собственный перенос микросхемы DD3 не учитывается). Поскольку на выходе Р10 число 10, на выходах сумматора число 2 (0010), то в результате получается число 12.

Сумматор-накопитель

Интересными свойствами обладает сумматор-накопитель, показанный на рисунке 4.

 

Рис. 4 - Сумматор-накопитель

На рисунке показан простейший сумматор-накопитель. На один вход сумматора подается число К, а на второй - число с выхода регистра. В начале работы регистр обнуляется (сброс). Если на входы В сумматора DD1 подать некоторое число К, то при подаче импульса на вход С регистра (такт) в него запишется число К (в начальный момент на выходе регистра лог.0). Это же число К попадет на входы А сумматора и по следующему такту в регистр запишется уже число 2К, которое опять попадет на входы А сумматора. На выходе сумматора появится число 3К и по следующему такту запишется в регистр и т. д. То есть, в сумматоре-накопителе постепенно нарастает число. Когда в сумматоре-накопителе накопленное число превышает его объем, равный 2n-1, на выходе переноса появляется сигнал лог. 1, а на выходах S число nK-2n.

Применение таких сумматоров весьма разнообразно. Если вместо регистра установить ОЗУ (это делается в многоканальных системах), тогда такой узел становится важнейшей частью микропроцессора. Посмотрим на эти свойства сумматора-накопителя. Поскольку сигнал переноса сумматора появляется через W=2n/K тактовых импульсов, то такой сумматор является обратным преобразователем входного числа К в число W. Это число можно подсчитать на счетчике. Ну а если выразить частоту появления имульсов переноса через число К, получится вот это:

 

Это значит, что получается преобразователь кода числа К в частоту импульсов. Такой преобразователь можно использовать в электронных музыкальных инструментах (ЭМИ), всяких звонках и т. п.

С помощью сумматоров-накопителей можно производить умножение числа на некоторый постоянный коэффициент, можно забабахать квадратичный накопитель и еще много всякой хренотени.

 

Регистрами называют логические устройства, предназначенные для запоминания и хранения цифровых кодов. Построение регистров выполняют на триггерах. Операцию передачи цифрового кода в регистр и из регистра можно осуществлять последовательно и параллельно.

На рис.9.13 изображено условное обозначение и схема четырёхразрядного регистра параллельного действия, построенного на синхронных D – триггерах. Регистр имеет четыре входа D1÷ D4информационных и один синхронизирующий вход С.

B исходное нулевое состояние логических сигналов на всех выходах Q1÷ Q4,

регистр устанавливается при подаче на синхронизирующий вход Ссигнала лог.1 и на все информационные входы D сигнала лог “0”. Запись двоичного числа производится при одновременной подаче на информационные входы D1÷ D4 кода числа.

 

 

Рис.9.13. Условное обозначение и схема четырёхразрядного регистра параллельного действия

Триггеры, на информационные входы которых подаются сигналы лог. 1, переводятся в состояния 1, остальные останутся в состоянии 0. Записанное число считывается с выходов Q1÷ Q4.

Для запоминания числа и сдвига влево используется схемы сдвигающего регистра. На рис.9.14 приведено условное обозначение и логическая схема сдвигающего регистра. Регистры такого типа используют в качестве преобразователей последовательного кода в параллельный код.

Регистр имеет два входа: на вход С поступают динамические импульсы сдвига, являющимися положительными импульсами, изменяющимися во времени; вход D является информационным входом.

При записи числа в сдвигающий регистр цифровой двоичный код подается на информационный вход D триггера Т1, начинается со старшего разряда. При этом положительные импульсы сдвига поступают на счётные входы С триггеров.

Работу регистра рассмотрим на примере записи числа 1011. С приходом импульса сдвига на вход С и подаче на вход D единицы старшего разряда числа, триггер Т1переводится в состояние 1 (Q1). В регистре используются элементы задержки ЭЗ, которые осуществляют задержку во времени перемещения сигнала с одного триггера на другой. При подаче очередного импульса сдвига на вход С и подаче на вход D второго разряда (нуля) числа, на выходе Q1 появится 0 , а 1 из триггера Т1 через элементЭЗ переместится в триггер Т2. С приходом очередного импульса сдвига на вход С и подаче на вход D третьего разряда (единицы) числа, триггер Т1 установится в 1 и т.д. Путём последовательной подачи кодов чисел на вход D и импульсов сдвига на вход С, число записывается в регистр.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 1029; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь