Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Вопрос 30. Дисперсионный анализ в Excel.
Дисперсионный анализ Существует несколько видов дисперсионного анализа. Нужный вариант выбирается с учетом числа факторов и имеющихся выборок из генеральной совокупности. Однофакторный дисперсионный анализ Это средство служит для анализа дисперсии по данным двух или нескольких выборок. При анализе гипотеза о том, что каждый пример извлечен из одного и того же базового распределения вероятности, сравнивается с альтернативной гипотезой, предполагающей, что базовые распределения вероятности во всех выборках разные. Если выборок только две, можно применить функцию. Для трех и более выборок не существует обобщения функции, но вместо этого можно воспользоваться моделью однофакторного дисперсионного анализа. Двухфакторный дисперсионный анализ с повторениями Этот инструмент анализа применяется, если данные можно систематизировать по двум параметрам. Например, в эксперименте по измерению высоты растений растения обрабатывали удобрениями от различных изготовителей (например, A, B, C) и содержали при различной температуре (например, низкой и высокой). Таким образом, для каждой из 6 возможных пар условий {удобрение, температура}, имеется набор наблюдений за ростом растений. С помощью этого дисперсионного анализа можно проверить следующие гипотезы: · Извлечены ли данные о росте растений для различных марок удобрений из одной генеральной совокупности. Температура в этом анализе не учитывается. · Извлечены ли данные о росте растений для различных уровней температуры из одной генеральной совокупности. Марка удобрения в этом анализе не учитывается. Извлечены ли шесть выборок, представляющих все пары значений {удобрение, температура}, используемые для оценки влияния различных марок удобрений (для первого пункта в списке) и уровней температуры (для второго пункта в списке), из одной генеральной совокупности. Альтернативная гипотеза предполагает, что влияние конкретных пар {удобрение, температура} превышает влияние отдельно удобрения и отдельно температуры. Билет 31 Экспе́ ртнаясисте́ ма (ЭС, англ. expertsystem) — компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные экспертные системы начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. Предтечи экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания[1]. В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности. Существует ряд прикладных задач, которые решаются с помощью систем, основанных на знаниях, более успешно, чем любыми другими средствами. При определении целесообразности применения таких систем нужно руководствоваться следующими критериями. 1. Данные и знания надежны и не меняются со временем. 2. Пространство возможных решений относительно невелико. 3. В процессе решения задачи должны использоваться формальные рассуждения. Существуют системы, основанные на знаниях, пока еще не пригодные для решения задач методами проведения аналогий или абстрагирования (человеческий мозг справляется с этим лучше). В свою очередь традиционные компьютерные программы оказываются эффективнее систем, основанных на знаниях, в тех случаях, когда решение задачи связано с применением процедурного анализа. Системы, основанные на знаниях, более подходят для решения задач, где требуются формальные рассуждения. 4. Должен быть по крайней мере один эксперт, который способен явно сформулировать свои знания и объяснить свои методы применения этих знаний для решения задач. В таблице один приведены сравнительные свойства прикладных задач, по наличию которых можно судить о целесообразности использования для их решения ЭС.
Таблица 2 - Критерий применимости ЭС. В целом ЭС не рекомендуется применять для решения следующих типов задач:
2. Ограничения в применение экспертных систем. Даже лучшие из существующих ЭС, которые эффективно функционируют как на больших, так и на мини-ЭВМ, имеют определенные ограничения по сравнению с человеком-экспертом. Большинство ЭС не вполне пригодны для применения конечным пользователем. Если вы не имеете некоторого опыта работы с такими системами, то у вас могут возникнуть серьезные трудности. Многие системы оказываются доступными только тем экспертам, которые создавали из базы знаний. Вопросно-ответный режим, обычно принятый в таких системах, замедляет получение решений. Например, без системы MYCIN врач может (а часто и должен) принять решение значительно быстрее, чем с ее помощью. Навыки системы не возрастают после сеанса экспертизы. Все еще остается проблемой приведение знаний, полученных от эксперта, к виду, обеспечивающему их эффективную машинную реализацию.
Системы, основанные на знаниях, оказываются неэффективными при необходимости проведения скрупулезного анализа, когда число “решений” зависит от тысяч различных возможностей и многих переменных, которые изменяются во времени. В таких случаях лучше использовать базы данных с интерфейсом на естественном языке. Билет 32
числе онкологическим. 33. Иску́ сственныйинтелле́ кт — 1) наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ; 2) свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека
В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д. Билет 34/ -35Центральная нервная система имеет клеточное строение. Единицей этой системы является нервная клетка или нейрон. Нейрон имеет следующие основные свойства: 1) участвует в обмене веществ и рассеивает энергию. Меняет внутреннее состояние с течением времени, реагирует на входные сигналы и формирует выходные воздействия и поэтому является активной динамической системой; 2) имеет множество синапсов – контактов для передачи информации; 3) нейрон взаимодействует путем обмена электрохимическими сигналами двух видов: электротоническими (с затуханием) и нервными импульсами (спайками), распространяющимися без затухания. Нейросетевые технологии – это алгоритмы, имитирующие деятельность биологического мозга искусственными структурами из формальных нейронов. В настоящее время нейроны разделяют на три большие группы: рецепторные, промежуточные и эффекторные. Рецепторные нейроны предназначены для ввода сенсорной информации в мозг. Они преобразуют воздействие окружающей среды на органы чувств (свет на сетчатку глаза, звук на ушную улитку) в электрические импульсы на выходе своих аксонов. Эффекторные нейроны передают приходящие на них электрические сигналы исполнительным органам, например мышцам, также через специальные синапсы своих аксонов. Промежуточные нейроны образуют центральную нервную систему и предназначены для обработки информации, полученной от рецепторов и передачи управляющих воздействий на эффекторы. Нейрон получает сигналы от других нейронов через древовидные отростки дендриты. Нейрон передает сигналы, сгенерированные телом клетки, вдоль аксона. На окончаниях волокон находятся синапсы. Синапс является элементарной структурой и функциональным узлом между двумя нейронами. Передача через синапс почти всегда однонаправленная. Различают пресинаптические и постсинаптические клетки — по направлению передачи импульса. Когда импульс достигает синаптического окончания, высвобождаются определенные химические вещества, называемые нейротрансмиттерами. Нейротрансмиттеры диффундируют через синаптическую щель, возбуждая или затормаживая, в зависимости от типа синапса, способность нейрона-приемника генерировать электрические импульсы. Искусственный нейрон является структурной единицей искусственной нейронной сети и представляет собой аналог биологического нейрона. С математической точки зрения искусственный нейрон — это сумматор всех входящих сигналов, применяющий к полученной взвешенной сумме некоторую простую, в общем случае, нелинейную функцию, непрерывную на всей области определения. Обычно, данная функция монотонно возрастает. Полученный результат посылается на единственный выход. Искусственные нейроны (в дальнейшем нейроны) объединяются между собой определенным образом, образуя искусственную нейронную сеть. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал поступает на синапсы следующих нейронов. Каждый синапс характеризуется величиной синаптической связи или ее весом wi, который является эквивалентом электрической проводимости биологических нейронов. Популярное: |
Последнее изменение этой страницы: 2016-07-12; Просмотров: 907; Нарушение авторского права страницы