|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Каскады АД с машиной постоянного тока и вентильным преобразователем
В этом типе каскадов добавочная ЭДС вводится в цепь выпрямленного тока ротора от вспомогательной машины постоянного тока. Выпрямленный ток цепи ротора, пропорциональный фазному току ротора АД, определяется выражением
Ф – магнитный поток МПТ; KСX – коэффициент, зависящий от схемы выпрямления (для трехфазной мостовой схемы KСX=1, 35); RЭ - эквивалентное сопротивление роторной цепи;
w0 – скорость идеального холостого хода каскада;
r2 - активное сопротивление фазы ротора; r1¢ - активное сопротивление фазы статора, приведенное к цепи выпрямленного тока ротора; rдр – сопротивление сглаживающего дросселя; Rя∑ – сопротивление якорной обмотки МПТ ( DUв – падение напряжения на вентилях выпрямителя; m – число пульсаций выпрямленной ЭДС ротора (m=6). Электромагнитный момент АД в каскадной схеме º Id Е2н – линейная ЭДС между кольцах ротора при S=1. Еdp=1, 35 Е2·S=1, 35 Е2н (при S=1) – средняя выпрямленная ЭДС на выходе выпрямителя роторной группы вентилей при разомкнутой цепи постоянного тока и S=1. Принципиальная схема электромеханического каскада приведена на рис. 5.15.1. Пуск этого каскада осуществляется при помощи пускового реостата RП и невозбужденной МПТ (замыкаются контакты К при разомкнутых контактах К1). По окончании пуска ротор АД переключается к выпрямителю замыканием контактов К1 (контакты К при этом размыкаются). Двигатель при этом будет работать с наибольшей скоростью. Возбуждая МПТ и увеличивая ее ток возбуждения, можно снизить скорость АД. Таким образом, регулирование скорости АД осуществляется изменением тока возбуждения МПТ, которое ведет к изменению противо ЭДС МПТ. При отсутствии возбуждения МПТ противо ЭДС ее равна 0 и в цепь выпрямленного тока она не введена. Ток ротора в этом случае максимален, максимальна и скорость ротора АД (близка к ω Н) Момент создается только АД. По мере увеличения тока возбуждения МПТ скорость привода будет снижаться, а момент, развиваемый МПТ – возрастать. Асинхронный двигатель при этом будет разгружаться, т.к. часть нагрузки механизма будет преодолеваться машиной постоянного тока. Момент каскада определяется суммой МКАС =МАД + ММПТ.
Если противо ЭДС МПТ будет равна выпрямленной ЭДС ротора, тока в роторной цепи АД не будет, и момент привода станет равным 0. Двигатель вращаться не будет. Нагрузка между АД и МПТ при пренебрежениями потерями в этом каскаде распределяется следующим образом:
Мощность МПТ зависит от требуемой глубины регулирования скорости
При Таким образом, рациональный диапазон регулирования этого каскада в разомкнутой схеме не превосходит 2: 1, ибо при Д> 2 мощность МПТ должна быть больше мощности АД. Механические характеристики только одного АД, включенного в схему каскада, изображены на рис. 5.15.2.
Критический момент на всех регулировочных характеристиках одинаков. Пусковой момент АД также одинаков и не зависит от тока возбуждения МПТ. Это объясняется тем, что при w=0 ЭДС МПТ также равна 0 и ток Id, а значит, и момент АД не зависят от тока возбуждения МПТ. Уравнение статических механических характеристик данного каскада имеет вид:
Критический (максимальный) момент каскада можно найти, взяв производную
Приближенно момент этого каскада можно определить по формуле:
В том случае, если роторная группа вентилей управляемая:
При пуске электрического вентильно-машинного каскада, схема которого приведена на рис. 5.15.4, вначале со стороны переменного тока разгоняется агрегат постоянной скорости ВАМ–МПТ, затем посредством реостата RП пускается АД (как и в электромеханическом каскаде) и в конце разгона он работает на естественной характеристике. При токе возбуждения МПТ, равном 0, якорная цепь МПТ подключается к выпрямителю В, после чего пусковой реостат RП отключается. Далее изменением тока возбуждения МПТ добиваются нужной скорости АД. Практически регулирование скорости АД осуществляется так же, как и в случае электромеханического каскада. При ЭДС МПТ=0, скорость АД при номинальной нагрузке составляет (85¸ 95)%, от синхронной. Относительно большое скольжение АД в этом каскаде объясняется явлением коммутации вентилей выпрямителя, которое приводит к уменьшению критического момента на искусственных характеристиках по сравнению с естественной на (5-15)% и влиянием сопротивлений выпрямителя и якоря МПТ. Уравнение статической механической характеристики электрического вентильно-машинного каскада имеет вид:
Семейство механических характеристик этого каскада при разных Iв приведено на рис. 5.15.5. Нижняя характеристика соответствует Iвн.
Диапазон регулирования скорости электрического каскада в разомкнутой системе не превосходит (2¸ 3): 1. Основной недостаток вентильно-машинных каскадов – необходимость применения коллекторной МПТ. Для увеличения диапазона регулирования неуправляемый В можно заменить управляемым. Это позволит в то же время отказаться от пускового реостата т.к. ограничение броска тока будет достигнуто регулированием угла α.
Регулируемый электропривод переменного тока с вентильным двигателем (ВД) Единственным способом регулирования скорости синхронного двигателя является частотное, что следует из выражения для угловой скорости Вентильный двигатель представляет собой единую систему, состоящую из синхронного двигателя СД и преобразователя частоты с промежуточным звеном постоянного тока или с непосредственной связью (НПЧ), вентили которого коммутируются в функции положения ротора или магнитного потока. Обмотка возбуждения двигателя, располагается на роторе, питается от постороннего источника постоянного тока. Есть двигатели с возбуждением постоянными магнитами. В электроприводах небольшой мощности чаще всего используется именно такое возбуждение. Вентильный коммутатор, т.е. инвертор, управляемый в функции положения ротора, выполняет роль коллектора обычной машины постоянного тока. Он присоединяется к обмотке статора СД и осуществляет распределение постоянного тока с преобразованием его в переменный. Последовательность переключения тока статора и связанная с этим очередность включения тиристоров инвертора определяется датчиком положения ротора (ДПР). Синхронный двигатель, работающий совместно с таким инвертором приобретает свойства машины постоянного тока и иногда его называют бесколлекторной машиной постоянного тока БМПТ. Механические характеристики ВД аналогичны характеристикам двигателя постоянного тока независимого возбуждения. Преимущества ВД по сравнению с машиной постоянного тока – отсутствие коллектора, что повышает надежность, позволяет питать двигатель повышенным напряжением, следовательно, осуществлять бестрансформаторное подключение силовой части электропривода к сети. Так, электропривод ЭПБ-1, выполненный на базе синхронного двигателя с постоянными магнитами на роторе, питается напряжением 520В постоянного тока, что позволяет подключать к сети 380В без трансформатора. Момент, возникающий в ВД (как синхронной машине) подчиняется зависимости
q – угол между осями полей статора и ротора (между векторами потокосцеплений) РП – число пар полюсов машины; Знак минус означает, что направление момента всегда противоположно направлению угла рассогласования q. С целью ограничения изменений момента электронная система регулирования обеспечивает изменение угла q (в окрестностях 900) в диапазоне ±300 (в ту и другую сторону), как показано на угловой характеристике СД (рис. 5.16.1). Именно такое регулирование и осуществляется тиристорным коммутатором, т.е. инвертором, в функции положения ротора. Физическое (пространственное) положение ротора определяется с помощью датчика положения ротора (ДПР), находящегося на валу двигателя.
Датчик положения ротора состоит из трех пар светофотодиодов, жестко привязанных к статору, в зазоре между которыми вращается диск, закрепленный на валу ротора. На диске по его периметру имеются прорези (см. рис. 5.16.2).
Угловая длина прорези на диске определяется как Выходные сигналы ДПР схемой распределения преобразуются в 120 градусные импульсы управления тиристорами, обеспечивая, таким образом, проводящее состояние каждому тиристору в течение 1200 за один период сигнала ДПР. Иначе говоря, при вращении ротора 3 пары светофотодиодов вырабатывают 3 последовательных импульса, сдвинутых во времени по отношению друг к другу на 1200. По передним фронтам этих импульсов осуществляется включение нечетных тиристоров коммутатора (первого, третьего, пятого), а по задним фронтам – четных (второго, четвертого, шестого). Длительность включенного состояния тиристоров соответствует интервалу проводимости 1200. Коммутация тока происходит 6 раз за один период сигнала ДПР. Алгоритм работы ДПР при одной паре полюсов можно проследить по схеме рис. 5.16.3. В приведенной таблице показана последовательность включений тиристоров. Во включенном состоянии одновременно находятся два тиристора из шести.
Изображенные на схеме транзисторные высокоамперные ключи КЛ1 и КЛ2 выполняют две независимые функции:
а) Обеспечивают режим коммутации тока с тиристора на тиристор ввиду невозможности самостоятельного выключения тиристоров, т.к. поскольку тиристоры ТК в силовой схеме подключаются к источнику постоянного напряжения, то для их отключения (и восстановления ими запирающих свойств) необходимо кратковременно разрывать силовую цепь ТК. б) Обеспечивают поддержание заданной величины тока через обмотки двигателя, т.е. участвуют в регулировании тока. Функция коммутации тока с тиристора на тиристор выполняется путем полного отключения ТК от источника питания. Транзисторы КЛ1 и КЛ2 в этом случае закрываются, протекание тока через тиристоры ТК прекращается, и они восстанавливают свои запирающие свойства, а реактивный ток iL двух фаз обмоток двигателя через два диода трехфазного выпрямительного моста возврата реактивной энергии замыкается на источник питания, перезаряжая его. Время обесточенного состояния ТК составляет » 300 мкс. В вентильных двигателях средней и большой мощности при скоростях (100¸ 3000)об/мин часто используют СД обычной конструкции и естественную коммутацию вентилей инвертора (ТК) в функции напряжения статора двигателя. Такие ВД применяются главным образом в приводах с мало- и медленно изменяющейся длительной нагрузкой. ВД на скорости < 100 и > 3000 об/мин не могут быть выполнены на основе СД обычной конструкции. Для ВД создаются СД специальных конструкций, в частности, бесщеточные с возбуждением постоянными магнитами. Они выполняются мощностью до 30кВт с максимальной скоростью 3000 об/мин, а также многополюсные тихоходные с числом полюсов более 12. Бесконтактные (бесщеточные) СД мощностью от 30 до 200 кВт при 3000об/мин выполняются с обмоткой возбуждения, расположенной в тех же пазах, что и трехфазная обмотка якоря. Ротор представляет безобмоточный магнитопровод, напоминающий зубчатое колесо, через зубцы которого замыкается магнитный поток обмотки возбуждения и обмотки якоря. Ротор вращается синхронно с полем, создаваемым током трехфазной обмотки статора, является в этом случае якорем. Т.к. ДВ имеет характеристики как у машины постоянного тока независимого возбуждения, то все способы регулирования его скорости характеризуются такими же показателями, что и у ДНВ, (изменением U и Ф). Но энергетические показатели регулирования в случае преобразователя частоты (АИН) у ВД хуже, чем у ДНВ из-за двукратного преобразования энергии. Несколько хуже и стабильность скорости и, как следствие, меньше диапазон регулирования вниз от основной скорости, т.к. механические характеристики его мягче, чем у ДНВ той же мощности. У ВД можно получить и характеристики двигателя последовательного возбуждения, если обмотку возбуждения включить последовательно в цепь выпрямленного тока на входе инвертора. Но в отличие от свойств обычного ДПВ за счет применения системы подчиненного регулирования тиристорами управляемого выпрямителя (от которого питается инвертор), которая уменьшает напряжение на статоре и ток в нем при снижении нагрузки, характеристики вентильного двигателя оказываются примерно такими же, как и у ДНВ с w0 и являются практически линейными. Возможен и генераторный режим с рекуперацией энергии в сеть. В этом случае УВ переводится в инверторный режим, а УИ – в выпрямительный (при w> w0). Применение ВД перспективно для мощных тихоходных электроприводов, например, для шаровых мельниц, и сверхбыстроходных (до 10000 об/мин) сверхмощных электроприводов, например, нагнетателей, в асинхронных электромеханических каскадах. Широко применяются ВД в станочном электроприводе, в шаговом электроприводе и др.
Популярное:
|
Последнее изменение этой страницы: 2016-07-12; Просмотров: 755; Нарушение авторского права страницы