Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные классификации каустобиолитов. Нефть и газ в ряду каустобиолитов.



Основные классификации каустобиолитов. Нефть и газ в ряду каустобиолитов.

Нефть и газ относятся к горючим полезным ископае­мым, которые называются также каустобиолитами. Помимо не­фти и газа, к каустобиолитам относятся: торф, различные виды углей, горючие углистые сланцы, а также битумы. К горючим ископаемым относят и группу липтобиолитов, представляющих собой янтарь и его производные (древние смолы, отложившиеся в морском иле).В химическом отношении каустобиолиты относятся к угле­водородам (УВ), так как углерод и водород являются основными элементами горючих ископаемых.Существуют различные классификации каустобиолитов, на­пример, по физическому состоянию (жидкие, твёрдые и газооб­разные). Некоторые исследователи делили каустобиолиты на две большие группы — угли и битумы, другие подразделяли их на продукты, связанные с сапропелем (органический ил от разло­жившихся животных организмов) или гумусом (тоже ил, но из растительных остатков).Рассмотрим упрощённый вариант упомянутой классифика­ции основных групп каустобиолитов — угольного и нефтяного рядов по стадиям преобразования различных видов УВ.По исходным органическим остаткам, которые стали источ­ником первичных продуктов угольного и нефтяного рядов, есть существенное различие. Ещё больше различий отмечено по ус­ловиям образования торфа, с одной стороны, нефти и природ­ного газа, с другой.Торф и угли образуются за счет отмирания высших растений и низших организмов в пресноводных (континентальных) бас­сейнах (озёра и болота), реже — в морских условиях (морском иле). При разложении растительных остатков в приповерхност­ных условиях при некотором доступе кислорода воздуха образу­ется торф — первый продукт угольного ряда, который обычно бывает рыхлым и насыщенным водой до 85—95%.Источником образованием нефти и природного газа является преимущественно органическое вещество морей и крупных внут-риматериковых водоёмов. Эти полезные ископаемые образуют­ся в условиях погружения первоначальных осадков, богатых орга­ническим веществом (ОВ), на большую глубину, где происходит преобразование ОВ в УВ нефтяного ряда под влиянием высоких температуры и давления. Количество УВ возрастает при погру­жении на глубину более 600 м в прямом соответствии с нараста­нием пластовых температуры и давления.К горючим сланцам относятся глинистые, песчанистые, известковистые осадочные породы, обогащенные органическим веществом как гумусового, так и сапропелевого типа.На первой стадии метаморфизации (буроугольной) из нефти образуются вначале мальты, затем асфальты, а далее асфальтиты. В отличие от углей, где метаморфизм связан с дальнейшим уп­лотнением и углублением продуктов угольного ряда, превраще­ние нефтей в битумы, наоборот, происходит при подъёме нефтя­ных пластов под действием тектонических сил в приповерхнос­тные условия, вплоть до полного их подъёма на дневную повер­хность. В указанных условиях нефть окисляется и теряет свою лёгкую часть, становится более плотной и вязкой. Мальты явля­ются продуктами первой стадии окисления нефтей и имеют мяг­кую консистенцию. Плотность мальт составляет 0, 96 г/см3.Асфальты являются продуктом окисления мальт и в отличие от мальт характеризуются более твёрдой консистенцией.Асфальтиты в химическом отношении имеют более высокую обогащённость асфальтово-смолистыми веществами, а по физи­ческому состоянию — это вёрдые хрупкие битумы. Перечис­ленные продукты, образованные на буроугольной стадии мета­морфизации нефтей, как и нефти, растворяются в органических растворителях и плавятся при Т = 90—100°С.На аналогичной стадии метаморфизма в нефтяном ряду из керитов образуются антраксолиты — продукты высшей степени карбонизации нефтяных битумов. К ним относятся: высшие и низшие антраксолиты и шунгиты — это твердые неплавкие и не­растворимые вещества. Они практически полностью состоят из углерода. Так, шунгит имеет состав: С — 96—98, 7%, Н = 0, 25— 1, 4%, N = 0, 15-1, 06%, S = 0, 31—0, 47%, 0= 1, 2-1, 78%.Конечный продукт метаморфизма углей и битумов представ­ляет собой графит, который состоит на 100% из углерода. Он как бы соединяет обе ветви каустобиолитов, хотя генезис их суще­ственно различается. Графит не является каустобиолитом, т.к. он не горит, однако он генетически связан с двумя рядами кау­стобиолитов. Следовательно, залежи графита, встречающиеся в земной коре, могут представлять собой конечный продукт пре­образования как углей, так и битумов.

 

КАУСТОБИОЛИТЫ Н ефть и газ в ряду каустобиолитов

Горючие ископаемые нефтяного ряда, к которым относятся нефти и их производные, а также горючие газы называются каустобиолиты.Слово каустобиолит происходит от нескольких греческих слов: «каустос» – горючий, «литос» – камень, «биос» – жизнь, т.е. горючий камень биогенного генезиса. Автор термина « каустобиолиты» немецкий ученый Г. Потонье (1908 г.).

Возникли каустобиолиты в результате преобразований органического вещества, первоисточником которого являлись остатки живых организмов. Общая направленность этих преобразований следующая:

Преобразование органического вещества на земной поверхности или на дне водоёмов.

Накопление отмерших организмов.

Погружение в недра земной коры.

Обогащение органического вещества углеродом.

Все горючие полезные ископаемые делятся на:

каустобиолиты нефтяного, или битумного ряда. К ним относятся нефти, горючие углеводородные газы, асфальты, озокериты и др.;

каустобиолиты угольного, или гумусового ряда. К ним относятся сингенетичные поро­ды и минералы (торфы, угли, антрациты и др.);

липтобиолиты. К липтобиолитам относятся некоторые органи­ческие соединения растительного происхождения (ископаемые смолы, воски, янтарь и др.).

Основное химическое различие членов нефтяного и угольно­го ряда состоит в соотношении углерода и водорода C/H, которое в нефтях варьирует незначительно – от 5, 5 до 11, 5, а в горючих ископаемых угольного ряда вариации значительно выше – от 9, 4 до 45.

Физико-химические свойства и состав нефтей.

Нефть представляет собой вязкую жидкость тёмно-коричневого, чаще чёрного цвета, иногда почти бесцветную, жирную на ощупь. Нефть состоит из смеси различных углеводородных соединений. В природе нефти очень разнообразны по консистенции – от жидких до густых, смолообразных.

Основные химические элементы, из которых состоит нефть, углерод и водород. Содержание углерода в нефти (С) – 82-87% и водорода (Н) – 11-14%. Кроме того, в нефти присутствуют гетероэлементы - кислород (О) – 0, 2-0, 7%, (бывает до 4%), азот(N) – 0, 1-0, 3%, (бывает до 2%), сера (S) – 0, 09- 0, 5%, (бывает до 2%), в небольших количествах встречаются фосфор, ванадий, никель, железо, алюминий и др.

В нефтях присутствуют три основные группы углеводородов (УВ):

- метановые или парафиновые;

- нафтеновые;

- ароматические.

МЕТАНОВЫЕ углеводороды

Общая формула CnH2n+2.

Метановые углеводороды - это органические соединения цепочечной структуры, в молекулах которых атомы углерода соединены между собой одинарными ковалентными связями (рис.1).

C H4, C2H6, C3H8, C4H10 – газообразные УВ;

C5H12, C6H14, C7H16, C8H18, C9H20, C10H22 ……. C16H34 – жидкие УВ;

C17H36 и выше – это твёрдые вещества.

 

Рис. 1. Варианты изображения строения молекул пентана:

а) структурная формула с указанием всех валентных связей, б) структурная формула связи между атомами углерода, в) упрощенная формула.

НАФТЕНОВЫЕ углеводороды

Общая формула CnH2n.

Для этих углеводородов характерно циклическое строение. Они состоят из нескольких групп – СН2-, соединённых в замкнутую систему. Для нефтей характерны нафтены, состоящие из пяти или шести групп – СН2-. Это циклопентаны (рис.2) и циклогексаны (рис.3).

 

Рис. 2. Циклопентан.

Рис. 3. Циклогексан.

АРОМАТИЧЕСКИЕ углеводороды

Общая формула CnH2n-6.

Эти углеводороды имеют циклическое строение, но при этом углеродные атомы связаны друг с другом двойными и простыми связями.

Простейший представитель – бензол (рис.4).

 

Рис. 4. Бензол.

 

Групповой состав нефти определяет её химические и физические свойства. Ряд параметров используется при подсчёте запасов нефти и газа и проектировании систем разработки, транспорти­ровки по нефтепроводам и т.д. Закономерности изменения состава и физических свойств нефтей и газов в разрезе и площади ряда месторождений позволяют решить многие вопросы геологичес­кого развития территории, например, определить направление миграции углеводородов, дальность миграции.

 

КЛАССИФИКАЦИЯ НЕФТЕЙ

Существует несколько классификаций нефтей И.П. Чоловского, Н.А.Еременко, В.И. Ермолкина и других авторов. В данном учебно-методическом пособии рассмотрены классификации по А.А. Бакирову.

По содержанию смол нефти классифицируются как:

1) малосмолистые (с содержанием до 10%);

2) смолистые (10–20%);

3) высокосмолистые (20–40%).

По содержанию серы нефти делятся на:

1) малосернистые (до 0, 5%);

2) сернистые (0, 5 – 2%);

3) высокосернистые (более 2%).

По содержанию парафи­на нефти делятся на:

1) беспарафинистые (парафина менее 1%);

2) слабопарафинистые (1–2%);

3) парафинистые (более 2%).

ФИЗИЧЕСКИЕ СВОЙСТВА НЕФТЕЙ

 

1. Плотность нефти – это отношение массы к объёму.

Единицы измерения в системе СИ – кг/м3, в системе СГС – г /см3. Изменяется плотность в пределах от 0, 70 – 1, 04 г/см3. Обычно плотность нефти меньше 1 и колеблется в пределах 0, 82 – 0, 92 г/см3.

По плотности нефти классифицируются:

1) лёгкие (до 0, 81 г/см3);

2) средние (0, 81 – 0, 87 г/см3);

3) тяжёлые (0, 87 – 0, 90 г/см3);

4) очень тяжёлые (0, 90 – 1, 04 г/см3).

На практике пользуются относительной плотностью, которая представляет собой отношение плотности нефти при температуре – 200С к плотности воды при температуре 40С.

В пластовых условиях плотность нефти меньше, чем на земной поверхности т.к. в пластовых условиях нефти содержат растворимые газы (в 1 м3 нефти может растворяться до 650 м3 газа).

Плотность нефти зависит от содержания в ней асфальто-смолистых веществ.

2. Вязкость нефти – свойство жидкости оказывать сопротивление перемещению её частиц при движении.

Параметр вязкости имеет большое значение:

а) для установления характера и масштабов миграции;

б) при разработке залежи и добычи нефти.

Различают вязкость: динамическую, кинематическую и относительную.

Динамическая вязкость – сила сопротивления перемещению слоя жидкости площадью в 1 см2 на 1 см со скоростью 1 см/с.

µ=P/F=S/v,

P - сила, F - поверхность соприкосновения двух слоев, S - расстояние между двумя слоями, v-приращение скорости движения первого слоя относительно второго.

Измеряется в системе СИ - Паскаль на секунду (Па.с) – это сопротивление, оказываемое жидкостью при перемещении относительно друг друга двух слоёв, площадью 1 м2 каждый, находящийся на расстоянии 1 м со скоростью 1 м/с под действием приложенной силы 1 Н.

Измеряется в системе СГС - Пуазах (П, или г/см.с);

Динамическая вязкость воды 1, 05 мПа.с (миллипаскаль-секунд), или 1, 05 сП (сантипуаз).

По динамической вязкости расчетным путём определяют значения рациональных дебитов скважин.

Кинематическая вязкость – отношение динамической вязкости к плотности жидкости.

γ = µ/ρ,

µ - динамическая вязкость, ρ – плотность жидкости.

В системе СИ измеряется – в м2/с, в системе СГС - в стоксах (Ст=см2/с =10-4 м2/с).

Данные кинематической вязкости используются в технологических расчётах.

Относительная вязкость – вязкость нефти к вязкости воды при одной и той же температуре.

Н= µн/ µв

Приборы для определения вязкости называются вискозиметрами.

Вязкость нефти меняется в широких пределах в основном от 0, 1 до 2000 мПа.с бывает и выше (природные битумы).

Выводы:

1.Чем тяжелее нефть, тем она менее подвижная.

2. Вязкость нефти растет с увеличением в ней асфальто-смолистых веществ.

3. С повышение температуры вязкость уменьшается.

4. С повышением давления вязкость увеличивается.

5. Группа нафтеновых углеводородов характеризуется большей вязкостью, чем группы ароматических и метановых.

 

Рассмотренные свойства (плотность и вязкость) определяются лабораторным путём по поверхностным пробам.

3. Газонасыщенность (газосодержание) нефти – определятся количеством газа, растворённого в нефти в условиях залежи.

Г=Vг/Vпл.ус.

Единицы измерения м33 (от 30-500).

Газонасыщенность определяется по глубинным пробам, которые отбирают при забойной части ствола скважин, глубинными пробоотборниками.

Электропроводность.

Нефти являются диэлектриками, т.е. не проводят электрический ток.

Нефти обладают высоким удельным сопротивлением (1010 - 1014 Ом.м).

ФИЗИЧЕСКИЕ СВОЙСТВА ГАЗОВ

 

1. Плотность газа – масса 1 м 3 газа при температуре 00 и давлении 0, 1 МПа (760 мм. рт. столба). Плотность газа зависит от давления и температуры. Плотность газов изменяется в пределах 0, 55 – 1 г/см3.

Обычно используется относительная плотность по воздуху (безразмерная величина – отношение плотности газа к плотности воздуха; при нормальных условиях плотность воздуха 1, 293 кг/м3).

2. Вязкость газов – внутреннее трение газов, возникающее при его движении. Вязкость газов очень мала 1. 10-5 Па.с. Столь низкая вязкость газов обеспечивает их высокую подвижность по трещинам и порам.

3. Растворимость газов – одно из важнейших свойств. Растворимость газов в нефти или в воде при давлении не более 5 МПа подчиняется закону Генри, т.е. количество растворённого газа прямо пропорциональнодавлению и коэффициенту растворимости.

Vi = ki P

При более высоких давлениях растворимость газа определяется уже целым рядом показателей: температурой, химическим составом, минерализацией подземных вод и др. Растворимость углеводородных газов в нефтях в 10 раз больше, чем в воде. Жирный газ лучше растворяется в нефти, чем сухой. Более лёгкая нефть растворяет больше газа, чем тяжёлая.

4. Критическая температура газа. Для каждого газа существует температура, выше которой он не переходит в жидкое состояние, как бы не было велико давление, т.е. критическая t (для СН4 tкр = –82, 10С). Гомологи метана могут находиться в жидком состоянии (для С2Н6 tкр = 32, 20С, С3Н8 tкр = 97, 00С).

5. Диффузия – это самопроизвольное перемещение газов на молекулярном уровне по направлению уменьшения концентраций.

6. Объёмный коэффициент пластового газа – это отношение объёма газа в пластовых условиях к объёму того же газа в стандартных условиях

(T =00 и P=0, 1 МПа).

Вг= Vг пл /Vг ст

 

Объём газа в пласте в 100 раз меньше, чем в стандартных условиях, т.к. газ обладает сверхсжимаемостью.

 

ГАЗОКОНДЕНСАТЫ

 

Не только газ способен растворяться в нефти, но и нефть может растворяться в газе. Это происходит при определённых условиях, а именно:

1) объём газа больше объёма нефти;

2) давление 20-25 МПа;

3) температура 90-950С.

При этих условиях жидкие углеводороды начинают растворяться в газе. Постепенно смесь полностью превращается в газовую. Это явление называется ретроградным испарением. Приизменении одного из условий, например, при понижении давления залежи в процессе разработки из этой смеси начинает выделяться конденсат в виде жидких углеводородов. Его состав: С5, Н12(пентан) и выше. Это явление называется ретроградной конденсацией.

Газоконденсат – жидкая часть газоконденсатных скоплений. Газоконденаты называют светлыми нефтями, так как они не содержат асфальто-смолистых веществ. Плотность газоконденсата 0, 65-0, 71 г/см3 . Плотность газоконденсатов увеличивается с глубиной, также она меняется (обычно увеличивается) в процессе разработки.

Различают сырой конденсат и стабильный.

Сырой представляет собой извлеченную на поверхность жидкую фазу, в которой растворены газообразные компоненты. Сырой конденсат получают непосредственно в промысловых сепараторах при давлениях и температурах сепарации.

Стабильный газоконденсат получают из сырого путем его дегазации, он состоит из жидких углеводородов (пентана) и высших.

ГАЗОГИДРАТЫ

Большинство газов образуют с водой кристаллогидраты – твёрдые вещества. Эти вещества называются газогидраты и образуются при низких температурах, высоких давлениях и на небольших глубинах. По своему виду напоминают рыхлый лёд или снег. Залежи такого типа обнаружены в районах вечной мерзлоты Западной и Восточной Сибири и в акваториях северных морей.

Проблема использования газогидратов пока в достаточной степени не разработана. Все вопросы добычи газогидратов сводятся к созданию в пласте таких условий, при которых бы газогидраты разложились на газ и воду.

Для этого необходимо:

1) снижение давления в пласте;

2) повышение температуры;

3) добавка специальных реагентов.

Закономерности и изменения свойств нефти и газа в залежах и месторождениях

, так и в результате физико-химических из-менений нефтей и газов, происходящих под влиянием внедряющейся в за-лежи воды и изменения пластовых давления и температуры. Поэтому для обоснованных прогнозов изменений свойств нефти и газа в процессе разра-ботки необходимо иметь четкие представления: а) о закономерностях изме-нения свойств нефти и газа по объему залежи до начала разработки; б) о процессах физико-химического взаимодействия нефтей и газов с водами, поступающими в продуктивный пласт (особенно с закачиваемыми водами иного состава, чем пластовая вода); в) о направлениях перемещения флюи-дов в продуктивном пласте в результате эксплуатации скважин; г) об изме-нениях пластовых давления и температуры в течение периода разработки залежи. Закономерности изменения свойств нефти и газа по объему залежи. Полное единообразие свойств нефти и растворенного в ней газа в преде-лах одной залежи -- довольно редкое явление. Для нефтяных залежей обычно изменения свойств достаточно закономерны и проявляются прежде всего в увеличении плотности, в том числе оптической плотности, вязкости, содержания асфальто-смолистых веществ, парафина и серы по мере возра-стания глубины залегания пласта, т. е. от свода к крыльям и от кровли к подошве в мощных пластах. Фактическое изменение плотности в пределах большинства залежей обычно не превышает 0, 05-0, 07 г/см3. Однако очень часто градиент нарастания плотности и ее абсолютные значения резко воз-растаютв непосредственной близости к водонефтяному контакту Нередко плотность нефти выше изолирующего слоя практически постоянна.В залежах «от-крытого» типа, приуроченных к пластам, выходящим на дневную поверхность, и запечатанных с головыасфальто-кировыми породами, плотность нефти с увеличением глубины уменьшается, достигает минимума, а затем увеличи-вается по мере приближения к ВНК. Описанные закономерности наиболее характерны для высоких залежей месторождений складчатых об-ластей. Основной причиной их образования является гравитационная диффе-ренциация (расслоение) нефтей по плотности внутри залежи, подобно рас-слоению газа, нефти и воды в пределах пласта. Существенное изменение свойств нефтей в зоне ВНК и в верхних частях нефтяных залежей откры-того типа связано с окислительными процессами.

Для залежей платформенных областей с невысоким этажом нефтеносно-сти и обширной зоной ВНК гравитационное расслоение проявляется гораздо слабее и основное влияние па изменение свойств нефтей оказывают окисли-тельные процессы в зоне, подстилаемой подошвенной водой.

Одновременно с увеличением плотности нефти, как правило, растут ее вязкость содержание асфальто-смолистых веществ и парафина, а также уменьшаются газосодержание и давление насыщения растворенных газов.

Несмотря на вы-сокую диффузионную активность газов, изменчивость их состава в пределах единой залежи -- далеко не редкое явление. Наиболее резко она проявля-ется в содержании кислых компонентов -- углекислоты СО2 и особенно сероводорода Н2S. В распределении сероводорода обычно наблюдается зо-нальность, выражающаяся в закономерном изменении концентраций серово-дорода по площади. Явных закономерных изменении концентрации по вы-соте залежи обычно нет.

Газоконденсатные залежи без нефтяной оторочки с невысоким этажом газоносности и невысоким конденсатогазовым фактором, как правило, имеют довольно стабильный состав газа, состав и выход конденсата. Однако при высоте газоконденсатной залежи более 300 м начинают заметно проявляться процессы гравитационного расслоения, приводя к увеличению содержания конденсата вниз по падению пласта, особенно резко -- для залежи с высоким этажом газоносности и нефтяной оторочкой. В этом случае содержание кон-денсата в пониженных участках залежи может быть в несколько раз выше, чем в своде залежи. Известны, в частности, примеры, когда конденсатогазовый фактор в скважинах присводной части залежи составлял 180 см33, а вблизи газонефтяного контакта -- 780 см33, т. е. в пределах одной за-лежи содержание конденсата изменялось в 4 раза. Колебания в 1, 5--2 раза обычны для многих месторождений с высокими этажами газоносности при выходе конденсата более 100 см33.

4. Главная зона нефтеобразования и ее роль в размещении залежей углеводородов.

Первичная миграция нефти.

Миграция нефти и газа – перемещение нефти и газа в земной коре в различном агрегатном состоянии. Основными факторами миграции нефти и газа являются сила тяжести, градиенты давления, температура и концентрация углеводородов.

. Различают первичную и вторичную миграции.

1) Первичная миграция – это процесс перемещения углеводород из нефтематеринских толщ в породы – коллекторы.

2) Вторичная миграция – это внутри – и межформационное перемещение углеводородов по породам – коллекторам: разрывным нарушениям, трещинам, поверхностям стратиграфического несогласия и т.д.

ФАКТОРЫ ПЕРВИЧНОЙ МИГРАЦИИ

Современно представление о факторах первичной миграции и состоянии мигрирующих углеводородов.

1. Образовавшиеся в стадию диагенеза углеводороды выжимаются вместе с водой из осадков при их уплотнении. С погружением пород углеводороды все более нагреваются. Повышение температуры обуславливает увеличение объема нефти и газа и тем самым способствует их перемещению.

2. Движение углеводородов может активизироваться в результате увеличения давления вследствие образования больших объемов новых веществ. При погружении пород на большие глубины усиливается генерация газа, и первичная нефть выносится ими из материнских пород в виде газового раствора. Эмиграция нефтяных углеводородов в виде газового раствора доказана экспериментально.

3. Явление диффузии (переноса) – реальный фактор первичной миграции. Под диффузией подразумевается взаимное проникновение молекул одного вещества в другое вследствие разности концентрации и стремления выравнить их.

 

Вторичная миграция нефти.

Миграция нефти и газа – перемещение нефти и газа в земной коре в различном агрегатном состоянии. Основными факторами миграции нефти и газа являются сила тяжести, градиенты давления, температура и концентрация углеводородов.

Роль и сила воздействия перечисленных факторов определяется конкретными свойствами геологического пространства и длительности их воздействия. Различают первичную и вторичную миграции.

1) Первичная миграция – это процесс перемещения углеводород из нефтематеринских толщ в породы – коллекторы.

2) Вторичная миграция – это внутри – и межформационное перемещение углеводородов по породам – коллекторам: разрывным нарушениям, трещинам, поверхностям стратиграфического несогласия и т.д

ФАКТОРЫ ВТОРИЧНОЙ МИГРАЦИИ

1. Гравитационный фактор. Благодаря гравитационному фактору возможно накопление нефти и газа в ловушках.

2. Гидравлический фактор – активная гидродинамическая обстановка, которая возникает при движении подземных вод, не только облегчая всплывание нефти и газа, но и способствуя перемещению УВ.

Постольку главный фактор миграции – это сила тяжести, то в основном миграция является восходящей, то есть субвертикальной. При надежной изоляции – покрышки – миграция происходит по проницаемым породам. Такой характер миграции называют сублатеральный (боковой). Обычно, миграция носит смешанный характер. Когда зоны латеральной и вертикальной миграции чередуются. Для газа, способного перемещаться по менее проницаемым породам и имеющего меньший удельный вес, вертикальная составляющая в процессе миграции будет больше, чем для нефти.

Существует еще один вид миграции – более редкий, но всё же встречающийся – нисходящая миграция: нефть в фазово-обособленном и газоконденсатном состоянии мигрирует вниз по разрезу. Это происходит, когда в каком-либо интервале разреза возникает повышенное пластовое давление, а изолированность пород сверху лучше, чем снизу, где залегают проницаемые горизонты с меньшим давлением.

Главным свойством геологической среды, обеспечивающим протекание процессов миграции, является её неоднородность по пористости, проницаемости и структурно-тектоническим признакам.

Миграция происходит по зонам наименьшего фильтрационного сопротивления, т.е. по направлению восстания проницаемого пласта в его кровельной части по породам с наибольшей проницаемостью до тектонического или литологического экрана. Такая миграция называется внутрирезервуарная или латеральная (осуществляется по породам и трещинам). Миграция, протекающая по разрывным нарушениям и стратиграфическим несогласиям называется межрезервуарная или вертикальная (рис.28).

 

Рис.28. Внутрирезервуарная (а, б) и межрезервуарная (в, г) миграция (стрелка показывает направление миграции).

МАСШТАБЫ МИГРАЦИИ

1. Локальная миграция – это миграция, которая контролируется размерами локальной структуры.

2. Зональная миграция – это миграция, которая контролируется зоной нефтегазонакопления.

3. Региональная миграция – это миграция, которая соответствует структуре 1-го и более высокого порядка.

 

Дальность латеральной миграции в платформенных условиях составляет десятки – первые сотни километров, а в геосинклинальных областях – не превышает десятки метров.

Диапазон вертикальной миграции ограничивается мощностью осадочного бассейна. Расстояние, направление и скорость УВ зависит: от геологической обстановки формирования залежи и от физических свойств нефти.

КОЛЛЕКТОРОВ НЕФТИ И ГАЗА

Для определения характеристики нефтяного и газового пласта необходимо знать:

1) гранулометрический (механический) состав пород;

2) пористость;

3) проницаемость;

4) капиллярные свойства;

5) удельную поверхность;

6) механические свойства (упругость, пластичность, сопротивление разрыву, сжатию и другим видам деформаций);

7) тепловые свойства (теплоемкость, теплопроводность, температуропроводность);

8) насыщенность пород водой, нефтью и газом в различных условиях.

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать при разработке, называются коллекторами.

Большинство пород-коллекторов имеют осадочное происхождение. Коллекторами нефти и газа являются как терригенные (пески, песчаники и алевролиты), так и карбонатные (известняки, доломиты, мел) породы.

По типу порового пространства выделяют три группы коллекторов нефти и газа:

1.Поровые (гранулярные). Они характерны для обломочных пород.

2.Трещинные. Они характерны для любых горных пород.

3. Каверноз­ные. Они характерны для карбонатных пород.

В природе часто развиты смешанные типы коллек­торов. Способность породы быть коллектором обусловлена её фильтрационно-ёмкостными свойствами: пористостью и проницаемостью.

Основная масса терригенных коллекторов характеризуется межзерновым (поровым) пространством – это межзерновые или гранулярные коллекторы. Однако среди терригенных пород встречаются и коллекторы со смешанным характером пустотного пространства. Выделяются трещинно-поровые и даже кавернозно-поровые разности.

Карбонатные породы как коллекторы нефти и газа уверенно конкурируют с терригенными образованиями. По различным данным, от 50 до 60% современных мировых запасов углеводородов приуро­чено к карбонатным образованиям. Среди них выделяются наи­лучшие по качеству коллекторы - карбонатные породы рифовых сооружений. Добыча нефти и газа, большая по объему, произво­дится из известняков и доломитов, в том числе из палеозоя и докембрия; наиболее крупные месторождения открыты в мезо­зойских и палеозойских породах.

По формированию пустотного пространства трещинные коллекторы отличаются от других типов. Для определения трещинной пустотности и проницаемости существуют особые способы. Как уже упоминалось, существуют макро- и микротрещины раскрытием соответственно более или менее 0, 1 мм. Макротрещины обычно изучаются, описываются и измеряются в поле обнажении, а микротрещины — под микроскопом в шлифах часто увеличенного размера. Необходимым элементом при исследовании трещин является определение их ориентации как в пространстве (вертикальные, горизонтальные, наклонные), так и отношению к пласту (по слоистости, поперек слоистости, диагональные) и к структурным формам (продольные, поперечные, радиальные и др.).

В генетическом отношении выделяются литогенетические и тектонические трещины.

НЕТРАДИЦИОННЫЕ КОЛЛЕКТОРЫ

К породам, роль которых в нефтегазоносности пока еще неве­лика по сравнению с вышеописанными, относятся толщи, сло­женные глинистыми, кремнистыми, вулканогенными, интрузив­ными, метаморфическими породами и др. Их можно разделить на две группы. В одних нефтегазоносность обычно сингенетична, в других она связана с приходом углеводородов из соседних толщ.

 

По действующей в настоящее время классификации горные породы разделяются на три основные группы: изверженные, осадочные и метаморфические.

К изверженным относятся породы, образовавшиеся в результате застывания и кристаллизации магматической массы сложного минералогического состава.

К осадочным породам относятся продукты разрушения литосферы, мелкораздробленные продукты вулканических явлений и продукты жизнедеятельности организмов.

Метаморфические породы образуются из осадочных и изверженных пород в результате глубокого физического, а иногда и химического изменения последних под влиянием высоких температур, давлений и химических воздействий. К метаморфическим породам относятся: сланцы, мрамор, яшмы и другие, имеющие преимущественно кристаллическое строение.

По происхождению осадочные породы делятся на терригенные, состоящие из обломочного материала, хемогенные, образующиеся из минеральных веществ, выпавших из водных растворов в результате химических и биохимических реакций или температурных изменений в бассейне, и органогенные, сложенные из скелетных остатков животных и растений.

Согласно этому делению к терригенным отложениям относятся:

пески, песчаники, алевриты, алевролиты, глины, аргиллиты и другие осадки обломочного материала;

к хемогенным – каменная соль, гипсы, ангидриты, доломиты, некоторые известняки и др.;

СТРУКТУРНЫЕ ЛОВУШКИ

Чтобы понять, что такое структурные ловушки, необходимо различать два понятия: «структурная амплитуда» и «структурный рельеф» (рис.8).

Структурная амплитуда (замкнутая высота) определяется как превышение гипсометрически наиболее высокой точки над самой низкой замкнутой изогипсой.

Под структурным рельефом складки, обычно превышающим ее структурную амплитуду, понимается высота, на которую смятый в антиклинальную складку пласт возвышается над региональным наклоном (тренд). Он измеряется длиной перпендикуляра, опущенного из наивысшей точки складки на поверхность регионального наклона пласта.

 

 

Рис.8. Структурная амплитуда и структурный рельеф.

 

При определении структурной амплитуды за горизонтальную опорную поверхность принимается уровень моря. Величина структурной амплитуды при регионально наклонном пласте не равна структурному рельефу: HР > HС.

Одна и та же складка может иметь различную структурную амплитуду, величина которой изменяется при изменении регионального наклона (рис. 9).

 

 

 

 

Рис.9. Примеры величины структурной амплитуды.

 

Из ловушек структурного типа обычно различают:

1. Сводовые.

2. Сводовые тектонически экранированные.

СВОДОВЫЕ ЛОВУШКИ

Углеводороды, мигрируя в коллекторах по восстанию слоёв или перпендикулярно к их напластованию по тектоническим нарушениям попадают в ловушку, т.е. в своды антиклинальных структур, где и формируют промышленные скопления нефти и газа (рис.10 а).

Нередко сводовые ловушки называют антиклинальными, все остальные неантиклинальными.

 

МАССИВНЫЕ ЛОВУШКИ

 

Ловушки массивного типа приурочены к мощной толще пород, перекрытых сверху и с боков непроницаемыми горными породами (гипсами, ангидритами и др.) (рис.11).

 

Рис. 11. Ловушка, приуроченная к рифовому массиву.

Линия выклинивания

Рис. 12. Литологически экранированная ловушка.

 

Среди ловушек широко развиты комбиниро­ванные или сложные, т.е. такие, образование которых обязано различ­ным факторам.

Породы – покрышки


Плохо проницаемые породы, перекрывающие породы-коллекторы со скоплениями нефти и газа, называютпородами - покрышками нефтяных и газовых залежей или породами - флюидоупорами.

Литологические ловушки.

Отличаются исключительным разнообразием, но могут быть сгруппированы в две основные категории: литологически-экранированные, связанные с фациальным замещением (выклиниванием) пласта-резервуара по восстанию, и литологически ограниченные.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 2399; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.153 с.)
Главная | Случайная страница | Обратная связь