Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Прикладной уровень (Application layer)



Шина

Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

В сети с топологией «шина» (рис.1.) компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.

 

Рис.1. Топология «Шина»

 

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу.

Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть.

Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Так как кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

· характеристики аппаратного обеспечения компьютеров в сети;

· частота, с которой компьютеры передают данные;

· тип работающих сетевых приложений;

· тип сетевого кабеля;

· расстояние между компьютерами в сети.

Шина — пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы (terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору — для увеличения длины кабеля. К любому свободному — неподключенному — концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Нарушение целостности сети

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает».

Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Звезда

Концепция топологии сети в виде звезды (рис.2.) пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

 

Рис.2. Топология «Звезда»

 

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Центральный узел управления – файловый сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Достоинства

· Выход из строя одной рабочей станции не отражается на работе всей сети в целом;

· Хорошая масштабируемость сети;

· Лёгкий поиск неисправностей и обрывов в сети;

· Высокая производительность сети;

· Гибкие возможности администрирования.

Недостатки

· Выход из строя центрального концентратора обернётся неработоспособностью сети в целом;

· Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

· Конечное число рабочих станций, т.е. число рабочих станций ограничено количеством портов в центральном концентраторе.

Кольцо

При кольцевой топологии (рис.3.) сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

 

Рис.3. Топология «Кольцо»

 

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию). Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции.

Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями. Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий.

Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub – концентратор), которые по-русски также иногда называют «хаб».

Ячеистая

При создании глобальных (WAN) и региональных (MAN) сетей используется чаще всего Ячеистая топология MESH (рис.4.). Первоначально такая топология была создана для телефонных сетей. Каждый узел в такой сети выполняет функции приема, маршрутизации и передачи данных. Такая топология очень надежна (при выходе из строя любого сегмента существует маршрут, по которому данные могут быть переданы заданному узлу) и обладает высокой устойчивостью к перегрузкам сети (всегда может быть найден маршрут, наименее загруженный передачей данных).

 


Рис.4. Ячеистая топология.

 

При разработке сети была выбрана топология «звезда» ввиду простой реализации и высокой надежности (к каждому компьютеру идет отдельный кабель).

1) Fast Ethernet с использованием 2 коммутаторов.(рис. 5)

       
 
   
2 сегмент
 


..20 эвм...  
..20 эвм...  

 

Рис. 5. Топология Fast Ethernet с использованием 2 коммутаторов.

 

2) Fast Ethernet с использованием 1 маршрутизатора и 2 коммутаторов.(рис.6)


..20 эвм...  
..20 эвм...  
2 сегмент
1 сегмент

 

Рис. 6. Топология Fast Ethernet с использованием 1 маршрутизатора и 2 коммутаторов.

 

4 Схема локальной сети

 

Ниже представлена схема расположения компьютеров и протяжки кабелей по этажам (рис.7, 8).

 


Рис. 7. Схема расположения компьютеров и прокладки кабеля на 1 этаже.

 


Рис. 8. Схема расположения компьютеров и прокладки кабеля на 2 этаже.

 

Данная схема разработана с учетом характерных особенностей здания. Кабели будут расположены под искусственным напольным покрытием, в специально отведенных для них каналах. Протяжка кабеля на второй этаж будет осуществляться через телекоммуникационный шкаф, который расположен в подсобном помещении, которое используется как серверная комната, где располагаются сервер и маршрутизатор. Коммутаторы расположены в основных помещениях в тумбах.

 

5 Эталонная модель OSI

 

При связи компьютеров по сети производится множество операций, обеспечивающих передачу данных от компьютера к компьютеру. Пользователю, работающему с каким-то приложением, в общем-то безразлично, что и как при этом происходит. Для него просто существует доступ к другому приложению или компьютерному ресурсу, расположенному на другом компьютере сети. В действительности же вся передаваемая информация проходит много этапов обработки. Прежде всего она разбивается на блоки, каждый из которых снабжается управляющей информацией. Полученные блоки оформляются в виде сетевых пакетов, эти пакеты кодируются, передаются с помощью электрических или световых сигналов по сети в соответствии с выбранным методом доступа, затем из принятых пакетов вновь восстанавливаются заключенные в них блоки данных, блоки соединяются в данные, которые и становятся доступны другому приложению. Это, конечно, очень упрощенное описание происходящих процессов. Часть из указанных процедур реализуется только программно, другая - аппаратно, а какие-то операции могут выполняться как программами, так и аппаратурой.

Упорядочить все выполняемые процедуры, разделить их на уровни и подуровни, взаимодействующие между собой, как раз и призваны модели сетей. Эти модели позволяют правильно организовать взаимодействие как абонентам внутри одной сети, так и самым разным сетям на различных уровнях. Наибольшее распространение получила в настоящее время так называемая эталонная модель обмена информацией открытой системы OSI (Open System Interchange). Под термином «открытая система» в данном случае понимается незамкнутая в себе система, имеющая возможность взаимодействия с какими-то другими системами (в отличие от закрытой системы).

Модель OSI была предложена Международной организацией стандартов ISO (International Standards Organization) в 1984 году. С тех пор ее используют (более или менее строго) все производители сетевых продуктов. Как и любая универсальная модель, модель OSI довольно громоздка, избыточна и не слишком гибка, поэтому реальные сетевые средства, предлагаемые различными фирмами, не обязательно придерживаются принятого разделения функций. Эталонная модель OSI стала основной архитектурной моделью для систем передачи сообщений. При рассмотрении конкретных прикладных телекоммуникационных систем производится сравнение их архитектуры с моделью OSI/ISO. Эта модель является наилучшим средством для изучения современной технологии связи.

Эталонная модель OSI делит проблему передачи информации между абонентами на семь менее крупных и, следовательно, более легко разрешимых задач. Конкретизация каждой задачи производилась по принципу относительной автономности. Очевидно, автономная задача решается легче.

Каждой из семи областей проблемы передачи информации ставится в соответствие один из уровней эталонной модели. Два самых низших уровня эталонной модели OSI реализуются аппаратным и программным обеспечением, остальные пять высших уровней, как правило, реализуются программным обеспечением. Эталонная модель OSI описывает, каким образом информация проходит через среду передачи (например, металлические провода) от прикладного процесса-источника (например, по передаче речи) до процесса-получателя.

Стек протоколов, представленный в виде 7-уровневой структуры, показан на рисунке 9.

 

Рис. 9. Структура модели OSI.

 

В рамках модели OSI взаимодействие двух систем представляется фактически в виде двух моделей - горизонтальной и вертикальной:

× в рамках горизонтальной модели рассматривается прямое взаимодействие (обмен данными) одинаковых уровней в двух конечных точках (хостах); для организации такого взаимодействия в каждой из конечных точек должны поддерживаться одинаковые протоколы для данного уровня;

× в вертикальной модели рассматривается обмен информацией (взаимодействие) между соседними уровнями одной системы с использованием интерфейсов API; в этой модели каждый уровень может предоставлять свои услуги вышележащему уровню и пользоваться услугами нижележащего уровня (крайние уровни модели в этом смысле представляют исключение - прикладной уровень предоставляет свои услуги пользователю, а сетевой уровень не пользуется сервисом других уровней)

Взаимодействие уровней

Уровни взаимодействуют сверху вниз и снизу вверх посредством интерфейсов и могут еще взаимодействовать с таким же уровнем другой системы с помощью протоколов.

Протоколы, использующиеся на каждом уровне модели OSI, представлены в таблице 1.

 

Таблица 1.

Протоколы уровней модели OSI

Уровень OSI Протоколы
Прикладной HTTP, gopher, Telnet, DNS, SMTP, SNMP, CMIP, FTP, TFTP, SSH, IRC, AIM, NFS, NNTP, NTP, SNTP, XMPP, FTAM, APPC, X.400, X.500, AFP, LDAP, SIP, ITMS, Modbus TCP, BACnet IP, IMAP, POP3, SMB, MFTP, BitTorrent, eD2k, PROFIBUS
Представления HTTP, ASN.1, XML-RPC, TDI, XDR, SNMP, FTP, Telnet, SMTP, NCP, AFP
Сеансовый ASP, ADSP, DLC, Named Pipes, NBT, NetBIOS, NWLink, Printer Access Protocol, Zone Information Protocol, SSL, TLS, SOCKS
Транспортный TCP, UDP, NetBEUI, AEP, ATP, IL, NBP, RTMP, SMB, SPX, SCTP, DCCP, RTP, TFTP
Сетевой IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, ARP, RARP, DHCP, BootP, SKIP, RIP
Канальный STP, ARCnet, ATM, DTM, SLIP, SMDS, Ethernet, FDDI, Frame Relay, LocalTalk, Token ring, StarLan, L2F, L2TP, PPTP, PPP, PPPoE, PROFIBUS
Физический RS-232, RS-422, RS-423, RS-449, RS-485, ITU-T, xDSL, ISDN, T-carrier (T1, E1), модификации стандарта Ethernet: 10BASE-T, 10BASE2, 10BASE5, 100BASE-T (включает 100BASE-TX, 100BASE-T4, 100BASE-FX), 1000BASE-T, 1000BASE-TX, 1000BASE-SX

 

Следует понимать, что подавляющее большинство современных сетей в силу исторических причин лишь в общих чертах, приближённо, соответствуют эталонной модели ISO/OSI.

Реальный стек протоколов OSI, разработанный как часть проекта, был воспринят многими как слишком сложный и фактически нереализуемый. Он предполагал упразднение всех существующих протоколов и их замену новыми на всех уровнях стека. Это сильно затруднило реализацию стека и послужило причиной для отказа от него многих поставщиков и пользователей, сделавших значительные инвестиции в другие сетевые технологии. В дополнение, протоколы OSI разрабатывались комитетами, предлагавшими различные и иногда противоречивые характеристики, что привело к объявлению многих параметров и особенностей необязательными. Поскольку слишком многое было необязательно или предоставлено на выбор разработчика, реализации различных поставщиков просто не могли взаимодействовать, отвергая тем самым саму идею проекта OSI.

В результате попытка OSI договориться об общих стандартах сетевого взаимодействия была вытеснена стеком протоколов TCP/IP, используемым в Интернете, и его более простым, прагматичным подходом к компьютерным сетям. Подход Интернета состоял в создании простых протоколов с двумя независимыми реализациями, требующимися для того, чтобы протокол мог считаться стандартом. Это подтверждало практическую реализуемость стандарта. Например, определения стандартов электронной почты X.400 состоят из нескольких больших томов, а определение электронной почты Интернета (SMTP) — всего несколько десятков страниц в RFC 821. Всё же стоит заметить, что существуют многочисленные RFC, определяющие расширения SMTP. Поэтому на данный момент полная документация по SMTP и расширениям также занимает несколько больших книг.

Большинство протоколов и спецификаций стека OSI уже не используются, такие как электронная почта X.400. Лишь немногие выжили, часто в значительно упрощённом виде. Структура каталогов X.500 до сих пор используется, в основном, благодаря упрощению первоначального громоздкого протокола DAP, получившему название LDAP и статус стандарта Интернета.

Свёртывание проекта OSI в 1996 году нанесло серьёзный удар по репутации и легитимности участвовавших в нём организаций, особенно ISO. Наиболее крупным упущением создателей OSI был отказ увидеть и признать превосходство стека протоколов TCP/IP.

 

6 Обоснование выбора технологии развертывания локальной сети

 

Для выбора технологии рассмотрим таблицу сравнений технологий FDDI, Ethernet и Token Ring (таблица 2).

 

Таблица 2. Характеристики технологий FDDI, Ethernet, Token Ring

Характеристика FDDI Ethernet Token Ring
Битовая скорость, Мбит/с
Топология Двойное кольцо деревьев Шина/звезда Звезда/кольцо
Среда передачи данных Оптоволокно, неэкранированная витая пара категории 5 Толстый коаксиал, тонкий коаксиал, витая пара категории 3, оптоволокно Экранированная или неэкранированная витая пара, оптоволокно
Максимальная длина сети (без мостов) 200 км (100 км на кольцо) 2500 м 40000 м
Максимальное расстояние между узлами 2 км (не более 11 дБ потерь между узлами) 2500 м 100 м
Максимальное количество узлов (1000 соединений) 260 для экранированной витой пары, 72 для неэкранированной витой пары

 

После анализа таблицы характеристик технологий FDDI, Ethernet, Token Ring, очевиден выбор технологии Ethernet (вернее ее модификации Fast Ethernet), которая учитывает все требованиям нашей локальной сети. Т.к технология Token Ring обеспечивает скорость передачи данных до 16 мбит\сек, то мы ее исключаем из дальнейшего рассмотрения, а из-за сложность реализации технологии FDDI, наиболее разумно будет использовать Ethernet.

 

7 Сетевые протоколы

 

Семиуровневая модель OSI является теоретической, и содержит ряд недоработок. Реальные сетевые протоколы вынуждены отклоняться от неё, обеспечивая непредусмотренные возможности, поэтому привязка некоторых из них к уровням OSI является несколько условной.

Основная недоработка OSI — непродуманный транспортный уровень. На нём OSI позволяет обмен данными между приложениями (вводя понятие порта — идентификатора приложения), однако, возможность обмена простыми дейтаграммами в OSI не предусмотрена — транспортный уровень должен образовывать соединения, обеспечивать доставку, управлять потоком и т. п. Реальные же протоколы реализуют такую возможность.

Сетевые транспортные протоколы обеспечивают базовые функции, необходимые компьютерам для коммуникаций с сетью. Такие протоколы реализуют полные эффективные каналы коммуникаций между компьютерами.

Транспортный протокол можно рассматривать как зарегистрированную почтовую службу. Транспортный протокол гарантирует, что передаваемые данные доходят до заданного адресата, проверяя получаемую от него квитанцию. Он выполняет контроль и исправление ошибок без вмешательства более высокого уровня.

Основными сетевыми протоколами являются:

- NetBEUI

- NWLink (IPX/SPX)

- TCP/IP

Стек протоколов TCP/IP.

TCP/IP - это средство для обмена информацией между компьютерами, объединенными в сеть. Не имеет значения, составляют ли они часть одной и той же сети или подключены к отдельным сетям. Не играет роли и то, что один из них может быть компьютером Cray, а другой Macintosh. TCP/IP - это не зависящий от платформы стандарт, который перекидывает мосты через пропасть, лежащую между разнородными компьютерами, операционными системами и сетями. Это протокол, который глобально управляет Internet, и в значительной мере благодаря сети TCP/IP завоевал свою популярность.

TCP/IP - это аббревиатура термина Transmission Control Protocol/Internet Protocol (Протокол управления передачей/Протокол Internet). В терминологии вычислительных сетей протокол - это заранее согласованный стандарт, который позволяет двум компьютерам обмениваться данными. Фактически TCP/IP не один протокол, а несколько. Именно поэтому его называют стеком протоколов, среди которых TCP и IP - два основных.

TCP/IP - зародился в результате исследований, профинансированных Управлением перспективных научно-исследовательских разработок (Advanced Research Project Agency, ARPA) правительства США в 1970-х годах. Этот протокол был разработан с тем, чтобы вычислительные сети исследовательских центров во всем мире могли быть объединены в форме виртуальной " сети сетей" (Internet). Первоначальная Internet была создана в результате преобразования существующего конгломерата вычислительных сетей, носивших название ARPAnet, с помощью TCP/IP.

Причина, по которой TCP/IP столь важен сегодня, заключается в том, что он позволяет самостоятельным сетям подключаться к Internet или объединяться для создания частных интрасетей. Вычислительные сети, составляющие интрасеть, физически подключаются через устройства, называемые маршрутизаторами или IP-маршрутизаторами. Маршрутизатор - это устройство или компьютер, который передает пакеты данных из одной сети в другую. В интрасети, работающей на основе TCP/IP, информация передается в виде дискретных блоков, называемых IP-пакетами (IP packets) или IP-дейтаграммами (IP datagrams). Благодаря программному обеспечению TCP/IP все компьютеры, подключенные к вычислительной сети, становятся " близкими родственниками". По существу оно скрывает маршрутизаторы и базовую архитектуру сетей и делает так, что все это выглядит как одна большая сеть. Точно так же, как подключения к сети Ethernet распознаются по 48-разрядным идентификаторам Ethernet, подключения к интрасети идентифицируются 32-разрядными IP-адресами, которые мы выражаем в форме десятичных чисел, разделенных точками (например, 128.10.2.3). Взяв IP-адрес удаленного компьютера, компьютер в интрасети или в Internet может отправить данные на него, как будто они составляют часть одной и той же физической сети.

TCP/IP дает решение проблемы данными между двумя компьютерами, подключенными к одной и той же интрасети, но принадлежащими различным физическим сетям. Решение состоит из нескольких частей, причем каждый член семейства протоколов TCP/IP вносит свою лепту в общее дело. IP - самый фундаментальный протокол из комплекта TCP/IP - передает IP-дейтаграммы по интрасети и выполняет важную функцию, называемую маршрутизацией, по сути дела это выбор маршрута, по которому дейтаграмма будет следовать из пункта А в пункт B, и использование маршрутизаторов для " прыжков" между сетями.

Протокол TCP/IP стал стандартом взаимодействия компьютеров Unix, особенно в военных учреждениях и университетах. С разработкой протокола передачи гипертекста HTTP (Hypertext Transfer Protocol) для совместной работы с документами HTML (Hypertext Markup Language), бесплатно прилагаемыми в большой глобальной сети, появилась система World Wide Web (WWW), а Internet расширилась на частный сектор. TCP/IP стал основой стремительной экспансии, потеснив применяемый в качестве коммерческого протокола IPX и став предпочитаемый среди всех сетевых ОС.

NWLink (IPX/SPX)

NWLink IPX/SPX/NetBIOS-совместимый транспортный протокол (NWLink) — это NDIS-совместимая 32-разрядная реализация протокола IPX/SPX фирмы Novell. Протокол NWLink поддерживает два интерфейса прикладного программирования (API): NetBIOS и Windows Sockets. Эти интерфейсы позволяют обеспечить связь компьютеров под управлением Windows между собой, а также с серверами NetWare.

Транспортный драйвер NWLink представляет собой реализацию протоколов низкого уровня NetWare, таких как IPX, SPX, RIPX (Routing Information Protocol over IPX) и NBIPX (NetBIOS over IPX). Протокол IPX управляет адресацией и маршрутизацией пакетов данных внутри сетей и между ними. Протокол SPX обеспечивает надежную доставку данных, поддерживая правильность последовательности их передачи и механизм подтверждений. Протокол NWLink обеспечивает совместимость с NetBIOS за счет уровня NetBIOS поверх протокола IPX.

IPX/SPX (от англ. Internetwork Packet eXchange/Sequenced Packet eXchange) — стек протоколов, используемый в сетях Novell NetWare. Протокол IPX обеспечивает сетевой уровень (доставку пакетов, аналог IP), SPX — транспортный и сеансовый уровень (аналог TCP).

Протокол IPX предназначен для передачи дейтограмм в системах, неориентированных на соединение (также как и IP или NETBIOS, разработанный IBM и эмулируемый в Novell), он обеспечивает связь между NetWare серверами и конечными станциями.

SPX (Sequence Packet eXchange) и его усовершенствованная модификация SPX II представляют собой транспортные протоколы 7-уровневой модели ISO. Это протокол гарантирует доставку пакета и использует технику скользящего окна (отдаленный аналог протокола TCP). В случае потери или ошибки пакет пересылается повторно, число повторений задается программно.

NetBEUI

NetBEUI - это пpотокол, дополняющий спецификацию интеpфейса NetBIOS, используемую сетевой опеpационной системой. NetBEUI фоpмализует кадp тpанспоpтного уpовня, не стандаpтизованный в NetBIOS. Он не соответствует какому-то конкpетному уpовню модели OSI, а охватывает тpанспоpтный уpовень, сетевой уpовень и подуpовень LLC канального уpовня. NetBEUI взаимодействует напpямую с NDIS уpовня MAC. Таким обpазом это не маpшpутизиpуемый пpотокол.

Транспортной частью NetBEUI является NBF (NetBIOS Frame protocol). Сейчас вместо NetBEUI обычно применяется NBT (NetBIOS over TCP/IP).

Как правило NetBEUI используется в сетях где нет возможности использовать NetBIOS, например, в компьютерах с установленной MS-DOS.

 

8 Аппаратное и программное обеспечение

Коммутационное оборудование

Повторитель (англ. repeater) - предназначен для увеличения расстояния сетевого соединения путем повторения электрического сигнала " один в один". Бывают однопортовые повторители и многопортовые. В сетях на витой паре повторитель является самым дешевым средством объединения конечных узлов и других коммуникационных устройств в единый разделяемый сегмент. Повторители Ethernet могут иметь скорость 10 или 100 Мбит/с (Fast Ethernet), единую для всех портов. Для Gigabit Ethernet повторители не используются.

Мост (от англ. bridge - мост) является средством передачи кадров между двумя (и более) логически разнородными сегментами. По логике работы является частным случаем коммутатора. Скорость обычно 10 Мбит/с (для Fast Ethernet чаще используются коммутаторы).

Концентратор или хаб (от англ. hub — центр деятельности) — сетевое устройство, для объединения нескольких устройств Ethernet в общий сегмент. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Хаб является частным случаем концентратора

Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключенные к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключенные устройства Ethernet разделяют между собой предоставляемую полосу доступа.

Многие модели хабов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключенных устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано хабом от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы — устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент, домен коллизий.

Коммутатор или switch (от англ. — переключатель) Коммутатор (switch, switching hub) по принципу обработки кадров ничем не отличается от моста. Основное его отличие от моста состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированным процессором, который обрабатывает кадры по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы — это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.

Это устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.

Коммутатор хранит в памяти специальную таблицу (ARP-таблицу), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует пакеты данных, определяя MAC-адрес компьютера-отправителя, и заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит пакет, предназначенный для этого компьютера, этот пакет будет отправлен только на соответствующий порт. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные коммутаторы позволяют управлять коммутацией на канальном и сетевом уровне модели OSI. Обычно их именуют соответственно, например Level 2 Switch или просто, сокращенно L2. Управление коммутатором может осуществляться посредством протокола Web-интерфейса, SNMP, RMON (протокол, разработанный Cisco) и т.п. Многие управляемые коммутаторы позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство - стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).

Преобразователь интерфейсов или конвертер (англ. media converter) позволяет осуществлять переходы от одной среды передачи к другой (например, от витой пары к оптоволокну) без логического преобразования сигналов. Благодаря усилению сигналов эти устройства могут позволять преодолевать ограничения на длину линий связи (если ограничения не связаны с задержкой распространения). Используются для связи оборудования с разнотипными портами.

Выпускается три типа конвертеров:

× Преобразователь RS-232 < –> RS-485;

× Преобразователь USB < –> RS-485;

× Преобразователь Ethernet < –> RS-485.

Преобразователь RS-232 < –> RS-485 преобразует физические параметры интерфейса RS-232 в сигналы интерфейса RS-485. Может работать в трех режимах приема-передачи. (В зависимости от установленного в конвертере программного обеспечения и состояния переключателей на плате конвертера).

Преобразователь USB < –> RS-485 - этот конвертер предназначен для организации интерфейса RS-485 на любом компьютере, имеющем интерфейс USB. Конвертер выполнен в виде отдельной платы, подключаемой к разъёму USB. Питание конвертера осуществляется непосредственно от порта USB. Драйвер конвертера позволяет создать для интерфейса USB виртуальный СОМ-порт и работать с ним как с обычным портом RS-485 (по аналогии с RS-232). Устройство обнаруживается сразу при подключении к порту USB.

Преобразователь Ethernet < –> RS-485 - этот конвертер предназначен для обеспечения возможности передачи сигналов интерфейса RS-485 по локальной сети. Конвертер имеет свой IP-адрес (устанавливаемый пользователем) и позволяет осуществить доступ к интерфейсу RS-485 с любого компьютера подключенного к локальной сети и установленным соответствующим программным обеспечением. Для работы с конвертером поставляются 2 программы: Port Redirector – поддержка интерфейса RS-485 (СОМ-порта) на уровне сетевой карты и конфигуратор Lantronix, позволяющий установить привязку конвертера к локальной сети пользователя, а также задать параметры интерфейса RS-485 (скорость передачи, количество бит данных и т.д.) Конвертер обеспечивает полностью прозрачную приемо-передачу данных в любом направлении.

Маршрутиза́ тор или ро́ утер (от англ. router) — сетевое устройство, используемое в компьютерных сетях передачи данных, которое, на основании информации о топологии сети (таблицы маршрутизации) и определённых правил, принимает решения о пересылке пакетов сетевого уровня модели OSI их получателю. Обычно применяется для связи нескольких сегментов сети.

Традиционно, маршрутизатор использует таблицу маршрутизации и адрес получателя, который находится в пакетах данных, для дальнейшей передачи данных. Выделяя эту информацию, он определяет по таблице маршрутизации путь, по которому следует передать данные и направляет пакет по этому маршруту. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 580; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.078 с.)
Главная | Случайная страница | Обратная связь