Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ценность информации изменяется во времени.



Тема: «ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ЗАЩИТЫ ИНФОРМАЦИИ В ИНФОРМАЦИОННЫХ СИСТЕМАХ»

Основными задачами изучения дисциплины являются знакомство студентов с конкретными системами защиты информации и привитие некоторых практических навыков в области построения защищенных информационных систем, функционирующих в рамках одного предприятия (организации).

Являясь дисциплиной специализации, данный курс готовит студентов к конкретной профессиональной деятельности и должен служить основой для их дальнейшего роста на должностях специалистов по защите информации.

Вступление человечества в XXI век знаменуется бурным развитием информационных технологий во всех сферах общественной жизни. Информация все в большей мере становится стратегическим ресурсом государства, производительной силой и дорогим товаром. Это не может не вызывать стремления государств, организаций и отдельных граждан получить преимущества за счет овладения информацией, недоступной оппонентам, а также за счет нанесения ущерба информационным ресурсам противника (конкурента) и защиты своих информационных ресурсов.

Значимость обеспечения безопасности государства в информационной сфере подчеркнута в принятой в сентябре 2000 года «Доктрине информационной безопасности Российской Федерации»: " Национальная безопасность Российской Федерации существенным образом зависит от обеспечения информационной безопасности, и в ходе технического прогресса эта зависимость будет возрастать ".

Остроту межгосударственного информационного противоборства можно наблюдать в оборонной сфере, высшей формой которой являются информационные войны. Элементы такой войны уже имели место в локальных военных конфликтах на Ближнем Востоке и на Балканах. Так, войскам НАТО удалось вывести из строя систему противовоздушной обороны Ирака с помощью информационного оружия. Эксперты предполагают, что войска альянса использовали программную закладку, внедренную заблаговременно в принтеры, которые были закуплены Ираком у французской фирмы и использовались в АСУ ПВО.

Не менее остро стоит вопрос информационного противоборства и на уровне организаций, отдельных граждан. Об этом свидетельствуют многочисленные попытки криминальных элементов получить контроль над компьютерными технологиями для извлечения материальной выгоды. По данным института компьютерной безопасности в Сан-Франциско из опрошенных специалистов в области информационной безопасности 64% сообщают о фактах нарушения безопасности, 44% - о НСД к файлам, 25% - об атаках, приводящих к нарушению функционирования системы, 24% - об атаках извне, 18% - о похищении важной информации, 15% - о финансовых злоупотреблениях, 14% - об умышленном повреждении данных. Все эти виды нарушений приводят к значительному материальному ущербу. В противовес этому необходимо создавать организационно-технические системы обеспечения безопасности в автоматизированных системах.

Важно также обеспечить конституционные права граждан на получение достоверной информации, на ее использование в интересах осуществления законной деятельности, а также на защиту информации, обеспечивающую личную безопасность.

Противоборство государств в области информационных технологий, стремление криминальных структур противоправно использовать информационные ресурсы, необходимость обеспечения прав граждан в информационной сфере, наличие множества случайных угроз вызывают острую необходимость обеспечения защиты информации в компьютерных системах (КС), являющихся материальной основой информатизации общества.

Проблема обеспечения информационной безопасности на всех уровнях может быть решена успешно только в том случае, если создана и функционирует комплексная система защиты информации, охватывающая весь жизненный цикл компьютерных систем от разработки до утилизации и всю технологическую цепочку сбора, хранения, обработки и выдачи информации.

Информация (от лат. informatio — осведомление, разъяснение, изложение, от лат. informare — придавать форму) — в широком смысле абстрактное понятие, имеющее множество значений, в зависимости от контекста. В узком смысле этого слова — сведения (сообщения, данные) независимо от формы их представления. В настоящее время не существует единого определения термина информация. С точки зрения различных областей знания, данное понятие описывается своим специфическим набором признаков. Например, «информация» может трактоваться, как совокупность данных, зафиксированных на материальном носителе, сохранённых и распространённых во времени и пространстве.

Основоположник кибернетики Норберт Винер говорил об информации так: «Информация есть информация, а не материя и не энергия».  

То есть Винер относил информацию (в теоретико-информационном понимании этого термина) к фундаментальным понятиям, не выводимым через более простые. Что, впрочем, не мешает нам пояснять смысл понятия информация на конкретных примерах и описывать её свойства. Например, если в ходе взаимодействия между объектами один объект передаёт другому некоторую субстанцию, но при этом сам её не теряет, то эта субстанция называется информацией, а взаимодействие — информационным.

Информация имеет ряд особенностей:

- она нематериальна;

Нематериальность информации понимается в том смысле, что нельзя измерить ее параметры известными физическими методами и приборами. Информация не имеет массы, энергии и т. п.

- информация хранится и передается с помощью материальных носителей;

Информация хранится и передается на материальных носителях. Такими носителями являются мозг человека, звуковые и электромагнитные волны, бумага, машинные носители (магнитные и оптические диски, магнитные ленты и барабаны) и др.

- любой материальный объект содержит информацию о самом себе или о другом объекте.

Информации присущи следующие свойства

1. Информация доступна человеку, если она содержится на материальном носителе.

Поэтому необходимо защищать материальные носители информации, так как с помощью материальных средств можно защищать только материальные объекты.

2. Информация имеет ценность.

Ценность информации определяется степенью ее полезности для владельца. Обладание истинной (достоверной) информацией дает ее владельцу определенные преимущества. Истинной или достоверной информацией является информация, которая с достаточной для владельца (пользователя) точностью отражает объекты и процессы окружающего мира в определенных временных и пространственных рамках.

Информация, искаженно представляющая действительность (недостоверная информация), может нанести владельцу значительный материальный и моральный ущерб. Если информация искажена умышленно, то ее называют дезинформацией.

Законом «Об информации, информатизации и защите информации» гарантируется право собственника информации на е` использование и защиту от доступа к ней других лиц (организаций).

Если доступ к информации ограничивается, то такая информация является конфиденциальной. Конфиденциальная информация может содержать государственную или коммерческую тайну.

Коммерческую тайну могут содержать сведения, принадлежащие частному лицу, фирме, корпорации и т. п. Государственную тайну могут содержать сведения, принадлежащие государству (государственному учреждению). В соответствии с законом «О государственной тайне» сведениям, представляющим ценность для государства, может быть присвоена одна из трёх возможных степеней секретности. В порядке возрастания ценности (важности) информации ей может быть присвоена степень (гриф) «секретно», «совершенно секретно» или «особой важности». В государственных учреждениях менее важной информации может присваиваться гриф «для служебного пользования».

Для обозначения ценности конфиденциальной коммерческой информации используются три категории:

- «коммерческая тайна - строго конфиденциально»;

- «коммерческая тайна - конфиденциально»;

- «коммерческая тайна».

Используется и другой подход к градации ценности коммерческой информации:

- «строго конфиденциально - строгий учёт»;

- «строго конфиденциально»;

- «конфиденциально».

Основные понятия

Система (от греческого systema — целое, составленное из частей соединение) — это совокупность элементов, взаимодействующих друг с другом, образующих определенную целостность, единство. Приведем некоторые понятия, часто ис­пользующиеся для характеристики системы.

1. Элемент системы — часть системы, имеющая определенное функциональное назначение. Сложные элементы систем, в свою очередь состоящие из более простых взаимосвязанных элементов, часто называют подсистемами.

2. Организация системы — внутренняя упорядоченность, согласованность взаимодействия элементов системы, проявляющаяся, в частности, в ограничении разнообразия состояний элементов в рамках системы.

3. Структура системы — состав, порядок и принципы взаимодействия элементов системы, определяющие основные свойства системы. Если отдельные элементы системы разнесены по разным уровням и внутренние связи между элементами организованы только от вышестоящих к нижестоящим уровням и наоборот, то говорят об иерархической структуре системы. Чисто иерархические структуры встречаются практически редко, поэтому, несколько расширяя это понятие, под иерархической структурой обычно понимают и такие структуры, где среди прочих связей иерархические связи имеют главенствующее значение.

4. Архитектура системы — совокупность свойств системы, существенных для пользователя.

5. Целостность системы — принципиальная несводимость свойств системы к сумме свойств отдельных ее элементов (эмерджентность свойств) и, в то же время, зависимость свойств каждого элемента от его места и функции внутри системы.

Информационная система — взаимосвязанная совокуп­ность средств, методов и персонала, используемых для хра­нения, обработки и выдачи информации в интересах дости­жения поставленной цели.

 

В Федеральном законе «Об информации, информатизации и защите информации» дается следующее определение:

«Информационная система — организационно упорядочен­ная совокупность документов (массивов документов) и ин­формационных технологий, в том числе с использованием средств вычислительной техники и связи, реализующих ин­формационные процессы»

Классификация по масштабу

По масштабу информационные системы подразделяются на следующие группы:

· одиночные;

· групповые;

· корпоративные.

Одиночные информационные системы реализуются, как правило, на автономном персональном компьютере (сеть не используется). Такая система может содержать несколько простых приложений, связанных общим информационным фондом, и рассчитана на работу одного пользователя или группы пользователей, разделяющих по времени одно рабочее место. Подобные приложения создайся с помощью так называемых настольных или локальных систем управления базами данных (СУБД). Среди локальных СУБД наиболее известными являются Clarion, Clipper, FoxPro, Paradox, dBase и Microsoft Access.

Групповые информационные системы ориентированы на коллективное использова­ние информации членами рабочей группы и чаще всего строятся на базе локальной вычислительной сети. При разработке таких приложений используются серверы баз данных (Называемые также SQL-серверами) для рабочих групп. Существует довольно большое количество различных SQL-серверов, как коммерческих, так и свободно распространяемых. Среди них наиболее известны такие серверы баз данных, как Oracle, DB2, Microsoft SQL Server, InterBase, Sybase, Informix.

Корпоративные информационные системы являются развитием систем для рабочих групп, они ориентированы на крупные компании и могут поддерживать тер­риториально разнесенные узлы или сети. В основном они имеют иерархическую структуру из нескольких уровней. Для таких систем характерна архитектура клиент-сервер со специализацией серверов или же многоуровневая архитектура. При разработке таких систем могут использоваться те же серверы баз данных, что и при разработке групповых информационных систем. Однако в крупных информационных системах наибольшее распространение получили серверы Oracle, DB2 и Microsoft SQL Server.

Для групповых и корпоративных систем существенно повышаются требования к надежности функционирования и сохранности данных. Эти свойства обеспечиваются поддержкой целостности данных, ссылок и транзакций в серверах баз.

Классификация по сфере применения

По сфере применения информационные системы обычно подразделяются на четыре группы:

· системы обработки транзакций;

· системы принятия решений;

· информационно-справочные системы;

· офисные информационные системы.

Системы обработки транзакций, в свою очередь, по оперативности обработки данных, разделяются на пакетные информационные системы и оперативные инфор­мационные системы. В информационных системах организационного управлений преобладает режим оперативной обработки транзакций, для отражения актуального состояния предметной области в любой момент времени, а пакетная обработка занимает весьма ограниченную часть.

Системы поддержки принятия решений — DSS (Decision Support Systeq) — представляют собой другой тип информационных систем, в которых с помощью довольно сложных запросов производится отбор и анализ данных в различных разрезах: временных, географических и по другим показателям.

Обширный класс информационно-справочных систем основан на гипертекстовых документах и мультимедиа. Наибольшее развитие такие информационные систе­мы получили в сети Интернет.

Класс офисных информационных систем нацелен на перевод бумажных документов в электронный вид, автоматизацию делопроизводства и управление документооборотом.

Классификация по способу организации

По способу организации групповые и корпоративные информационные системы подразделяются на следующие классы:

· системы на основе архитектуры файл-сервер;

· системы на основе архитектуры клиент-сервер;

· системы на основе многоуровневой архитектуры;

· системы на основе Интернет/интранет - технологий.

В любой информационной системе можно выделить необходимые функциональные компоненты, которые помогают понять ограничения различных архитектур информационных систем.

Архитектура файл-сервер только извлекает данные из файлов так, что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети.

Архитектура клиент-сервер предназначена для разрешения проблем файл-серверных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, понимающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации.

В настоящее время архитектура клиент-сервер получила признание и широкое распространение как способ организации приложений для рабочих групп и информационных систем корпоративного уровня. Подобная организация работы повышает эффективность выполнения приложений за счет использования воз­можностей сервера БД, разгрузки сети и обеспечения контроля целостности дан­ных.

Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:

- нижний уровень представляет собой приложения клиентов, имеющие программный интерфейс для вызова приложения на среднем уровне;

- средний уровень представляет собой сервер приложений;

- верхний уровень представляет собой удаленный специализированный сервер базы данных.

Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для разработки приложений и устраняет недостатки двухуровневой модели клиент-сервер.

В развитии технологии Интернет/Интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/Интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер — сервер приложений — сервер баз данных — сервер динамических страниц — web-сервер.

По характеру хранимой информации БД делятся на фактографические и документальные. Если проводить аналогию с описанными выше примерами информационных хранилищ, то фактографические БД — это картотеки, а документальные — это архивы. В фактографических БД хранится краткая информация в строго определенном формате. В документальных БД — всевозможные документы. Причем это могут быть не только текстовые документы, но и графика, видео и звук (мультимедиа).

Автоматизированная система управления (АСУ) - это комплекс технических и программных средств, совместно с организационными структурами (отдельными людьми пли коллективом), обеспечивающий управление объектом (комплексом) в производственной, научной или общественной среде.

Выделяют информационные системы управления образования (Например, кадры, абитуриент, студент, библиотечные программы). Автоматизированные системы для научных исследований (АСНИ), представляющие собой программно-аппаратные комплексы, обрабатывающие данные, поступающие от различного рода экспериментальных установок и измерительных приборов, и на основе их анализа облегчающие обнаружение новых эффектов и закономерностей.Системы автоматизированного проектирования и геоинформационные системы.

Систему искусственного интеллекта, построенную на основе высококачественных специальных знании о некоторой предметной области (полученных от экспертов - специалистов этой области), называют экспертной системой. Экспертные системы - один из немногих видов систем искусственного интеллекта - получили широкое распространение, и нашли практическое применение. Существуют экспертные системы по военному делу, геологии, инженерному делу, информа­тике, космической технике, математике, медицине, метеорологии, промышленности, сельскому хозяйству, управлению, физике, химии, электронике, юриспруденции и т.д. И только то, что экспертные системы остаются весьма сложными, дорогими, а главное, узкоспециализированными программами, сдерживает их еще более широкое распространение.

Экспертные системы (ЭС) - это компьютерные программы, созданные для выполнения тех видов деятельности, которые под силу человеку-эксперту. Они работают таким образом, что имитируют образ действий человека-эксперта, и существенно отличаются от точных, хорошо аргументированных алгоритмов и не похожи на математические процедуры большинства традиционных разработок.

 

Предметом нашего изучения являются информационные технологии, которые реализуются на практике в автоматизированных информационных системах (АИС) различного назначения.

В качестве основных средств (инструмента) автоматизации профессиональной деятельности людей сегодня выступают средства ЭВТ и связи.

В качестве основного классификационного признака АИС целесообразно рассматривать особенности автоматизируемой профессиональной деятельности – процесса переработки входной информации для получения требуемой выходной информации, в котором АИС выступает в качестве инструмента должностного лица или группы должностных лиц, участвующих в управлении организационной системой.

В соответствии с предложенным классификационным при­знаком можно выделить следующие классы АИС:

· автоматизированные системы управления (АСУ);

· системы поддержки принятия решения (СППР);

· автоматизированные информационно-вычислительные сис­темы (АИВС);

· автоматизированные системы обучения (АСО);

· автоматизированные информационно-справочные системы (АИСС).

Рассмотрим особенности каждого класса АИС и характери­стики возможных видов АИС в составе каждого класса.

Моделирующее центры

МЦ — автоматизированная информационная система, представляющая собой комплекс готовых к использованию моделей, объединенных единой предметной областью, информационной базой и языком общения с пользователями.

МЦ, так же как и ПОИС, предназначены для обеспечения проведения исследований на различных моделях. Но в отличие от ПОИС, МЦ не обеспечивают автоматизацию создания имитационных моделей, а предоставляют пользователю возможность комфортной работы с готовыми моделями.

МЦ могут являться системами как коллективного, так и индивидуального использования и в принципе не требуют для своей реализации мощных ЭВМ.

Случайные угрозы

Угрозы, которые не связаны с преднамеренными действиями злоумышленников и реализуются в случайные моменты времени, называют случайными или непреднамеренными.

Реализация угроз этого класса приводит к наибольшим потерям информации (по статистическим данным - до 80% от ущерба, наносимого информационным ресурсам КС любыми угрозами). При этом могут происходить уничтожение, нарушение целостности и доступности информации. Реже нарушается конфиденциальность информации, однако при этом создаются предпосылки для злоумышленного воздействия на информацию.

Стихийные бедствия и аварии чреваты наиболее разрушительными последствиями для КС, т.к. последние подвергаются физическому разрушению, информация утрачивается или доступ к ней становится невозможен.

Сбои и отказы сложных систем неизбежны. В результате сбоев и отказов нарушается работоспособность технических средств, уничтожаются и искажаются данные и программы, нарушается алгоритм работы устройств. Нарушения алгоритмов работы отдельных узлов и устройств могут также привести к нарушению конфиденциальности информации. Например, сбои и отказы средств выдачи информации могут привести к несанкционированному доступу к информации путем несанкционированной ее выдачи в канал связи, на печатающее устройство и т. п.

Ошибки при разработке КС, алгоритмические и программные ошибки приводят к последствиям, аналогичным последствиям сбоев и отказов технических средств. Кроме того, такие ошибки могут быть использованы злоумышленниками для воздействия на ресурсы КС. Особую опасность представляют ошибки в операционных системах (ОС) и в программных средствах защиты информации.

Согласно данным Национального Института Стандартов и Технологий США (NIST) 65 % случаев нарушения безопасности информации происходит в результате ошибок пользователей и обслуживающего персонала. Некомпетентное, небрежное или невнимательное выполнение функциональных обязанностей сотрудниками приводят к уничтожению, нарушению целостности и конфиденциальности информации, а также компрометации механизмов защиты.

Характеризуя угрозы информации в КС, не связанные с преднамеренными действиями, в целом, следует отметить, что механизм их реализации изучен достаточно хорошо, накоплен значительный опыт противодействия этим угрозам. Современная технология разработки технических и программных средств, эффективная система эксплуатации КС, включающая обязательное резервирование информации, позволяют значительно снизить потери от реализации угроз этого класса.

Преднамеренные угрозы

Второй класс угроз безопасности информации в КС составляют преднамеренно создаваемые угрозы.

Данный класс угроз изучен недостаточно, очень динамичен и постоянно пополняется новыми угрозами. Угрозы этого класса в соответствии с их физической сущностью и механизмами реализации могут быть распределены по пяти группам:

1) традиционный или универсальный шпионаж и диверсии;

2) несанкционированный доступ к информации;

3) электромагнитные излучения и наводки;

4) модификация структур КС;

5) вредительские программы.

Вредительские программы

Одним из основных источников угроз безопасности информации в КС является использование специальных программ, получивших общее название «вредительские программы».

В зависимости от механизма действия вредительские программы делятся на четыре класса:

· «логические бомбы»;

· «черви»;

· «троянские кони»;

· «компьютерные вирусы».

«Логические бомбы» - это программы или их части, постоянно находящиеся в ЭВМ или вычислительных системах (ВС) и выполняемые только при соблюдении определенных условий. Примерами таких условий могут быть: наступление заданной даты, переход КС в определенный режим работы, наступление некоторых событий установленное число раз и т.п.

«Червями» называются программы, которые выполняются каждый раз при загрузке системы, обладают способностью перемещаться в ВС или сети и самовоспроизводить копии. Лавинообразное размножение программ приводит к перегрузке каналов связи, памяти и, в конечном итоге, к блокировке системы.

«Троянские кони» - это программы, полученные путем явного изменения или добавления команд в пользовательские программы. При последующем выполнении пользовательских программ наряду с заданными функциями выполняются несанкционированные, измененные или какие-то новые функции.

«Компьютерные вирусы» - это небольшие программы, которые после внедрения в ЭВМ самостоятельно распространяются путем создания своих копий, а при выполнении определенных условий оказывают негативное воздействие на КС.

Поскольку вирусам присущи свойства всех классов вредительских программ, то в последнее время любые вредительские программы часто называют вирусами.

Система охраны объекта КС

При защите информации в КС от традиционного шпионажа и диверсий используются те же средства и методы защиты, что и для защиты других объектов, на которых не используются КС. Для защиты объектов КС от угроз данного класса должны быть решены следующие задачи:

· создание системы охраны объекта;

· организация работ с конфиденциальными информационными ресурсами на объекте КС;

· противодействие наблюдению;

· противодействие подслушиванию;

· защита от злоумышленных действий персонала.

Объект, на котором производятся работы с ценной конфиденциальной информацией, имеет, как правило, несколько рубежей защиты:

1. контролируемая территория;

2. здание;

3. помещение;

4. устройство, носитель информации;

5. программа;

6. информационные ресурсы.

От шпионажа и диверсий необходимо защищать первые четыре рубежа и обслуживающий персонал.

Система охраны объекта (СОО) КС создается с целью предотвращения несанкционированного проникновения на территорию и в помещения объекта посторонних лиц, обслуживающего персонала и пользователей.

Состав системы охраны зависит от охраняемого объекта. В общем случае СОО КС должна включать следующие компоненты:

· инженерные конструкции;

· охранная сигнализация;

· средства наблюдения;

· подсистема доступа на объект;

· дежурная смена охраны.

Инженерные конструкции

Инженерные конструкции служат для создания механических препятствий на пути злоумышленников. Они создаются по периметру контролируемой зоны. Инженерными конструкциями оборудуются также здания и помещения объектов. По периметру контролируемой территории используются бетонные или кирпичные заборы, решетки или сеточные конструкции. Бетонные и кирпичные заборы имеют обычно высоту в пределах 1, 8-2, 5 м, сеточные - до 2, 2 м. Для повышения защитных свойств заграждений поверх заборов укрепляется колючая проволока, острые стержни, армированная колючая лента. Последняя изготавливается путем армирования колючей ленты стальной оцинкованной проволокой диаметром 2, 5 мм. Армированная колючая лента часто используется в виде спирали диаметром 500-955 мм.

Для затруднения проникновения злоумышленника на контролируемую территорию могут использоваться малозаметные препятствия. Примером малозаметных препятствий может служить металлическая сеть из тонкой проволоки. Такая сеть располагается вдоль забора на ширину до 10 метров. Она исключает быстрое перемещение злоумышленника.

В здания и помещения злоумышленники пытаются проникнуть, как правило, через двери или окна. Поэтому с помощью инженерных конструкций укрепляют, прежде всего, это слабое звено в защите объектов, Надежность двери зависит от механической прочности самой двери и от надежности замков. Чем выше требования к надежности двери, тем более прочной она выполняется, тем выше требования к механической прочности и способности противостоять несанкционированному открыванию предъявляются к замку.

Вместо механических замков все чаще используются кодовые замки. Самыми распространенными среди них (называемых обычно сейфовыми замками) являются дисковые кодовые замки с числом комбинаций кода ключа в пределах 106 -107.

Наивысшую стойкость имеют электронные замки, построенные с применением микросхем.

Например, при построении электронных замков широко используются микросхемы Тоuch Меmorу. Микросхема помещена в стальной корпус, который по внешнему виду напоминает элемент питания наручных часов, калькуляторов и т. п. Диаметр цилиндрической части равен 16 мм, а высота - 3-5 мм. Электропитание микросхемы обеспечивается находящимся внутри корпуса элементом питания, ресурс которого рассчитан на 10 лет эксплуатации. Корпус может размещаться на пластиковой карте или в пластмассовой оправе в виде брелка. В микросхеме хранится ее индивидуальный 64-битовый номер. Такая разрядность обеспечивает около 1020 комбинаций ключа, практически исключающая его подбор. Микросхема имеет также перезаписываемую память, что позволяет использовать ее для записи и считывания дополнительной информации. Обмен информацией между микросхемой и замком осуществляется при прикосновении контакта замка и определенной части корпуса микросхемы.

На базе электронных замков строятся автоматизированные системы контроля доступа в помещения. В каждый замок вводятся номера микросхем, владельцы которых допущены в соответствующее помещение. Может также задаваться индивидуальный временной интервал, в течение которого возможен доступ в помещение. Все замки могут объединяться в единую автоматизированную систему, центральной частью которой является ПЭВМ. Вся управляющая информация в замки передается из ПЭВМ администратором. Если замок открывается изнутри также при помощи электронного ключа, то система позволяет фиксировать время входа и выхода, а также время пребывания владельцев ключей в помещениях. Эта система позволяет в любой момент установить местонахождение сотрудника. Система следит за тем, чтобы дверь всегда была закрыта. При попытках открывания двери в обход электронного замка включается сигнал тревоги с оповещением на центральный пункт управления. К таким автоматизированным системам относится отечественная система «Барс».

По статистике 85 % случаев проникновения на объекты происходит через оконные проемы. Эти данные говорят о необходимости инженерного укрепления окон, которое осуществляется двумя путями:

· установка оконных решеток;

· применение стекол, устойчивых к механическому воздействию.

Традиционной защитой окон от проникновения злоумышленников является установка решеток. Решетки должны иметь диаметр прутьев не менее 10 мм, расстояние между ними должно быть не более 120 мм, а глубина заделки прутьев в стену - не менее 200 мм.

Не менее серьезным препятствием на пути злоумышленника могут быть и специальные стекла. Повышение механической прочности идет по трем направлениям:

· закаливание стекол;

· изготовление многослойных стекол;

· применение защитных пленок.

Механическая прочность полузакаленного стекла в 2 раза, а закаленного в 4 раза выше обычного строительного стекла.

В многослойных стеклах используются специальные пленки с высоким сопротивлением на разрыв. С помощью этих «ламинированных» пленок и синтетического клея обеспечивается склеивание на молекулярном уровне пленки и стекол. Такие многослойные стекла толщиной 48-83 мм обеспечивают защиту от стальной 7, 62 мм пули, выпущенной из автомата Калашникова.

Все большее распространение получают многофункциональные защитные полиэфирные пленки. Наклеенные на обычное оконное стекло, они повышают его прочность в 20 раз. Пленка состоит из шести очень тонких (единицы микрон) слоев: лавсана (3 слоя), металлизированного и невысыхающего клея адгезива и лакового покрытия. Кроме механической прочности они придают окнам целый ряд защитных свойств и улучшают эксплуатационные характеристики. Пленки ослабляют электромагнитные излучения в 50 раз, существенно затрудняют ведение разведки визуально-оптическими методами и перехват речевой информации лазерными средствами. Кроме того, пленки улучшают внешний вид стекол, отражают до 99 % ультрафиолетовых лучей и 76 % тепловой энергии солнца, сдерживают распространение огня при пожарах в течение 40 минут.

Охранная сигнализация

Охранная сигнализация служит для обнаружения попыток несанкционированного проникновения на охраняемый объект. Системы охранной сигнализации должны отвечать следующим требованием:

· охват контролируемой зоны по всему периметру;

· высокая чувствительность к действиям злоумышленника;

· надежная работа в любых погодных и временных условиях;

· устойчивость к естественным помехам;

· быстрота и точность определения места нарушения;

· возможность централизованного контроля событий.

Структура типовой системы охранной сигнализации представлена на рис. 1.

Рис. 1. Структура типовой системы охранной сигнализации

Датчик (извещатель) представляет собой устройство, формирующее электрический сигнал тревоги при воздействии на датчик или на создаваемое им поле внешних сил или объектов.

Шлейф сигнализации образует электрическую цепь для передачи сигнала тревоги от датчика к приемно-контрольному устройству.

Приемно-контрольное устройство служит для приема сигналов от датчиков, их обработки и регистрации, а также для выдачи сигналов в оповещатель.

Оповещатель выдает световые и звуковые сигналы дежурному охраннику.

По принципу обнаружения злоумышленников датчики делятся на:

· контактные;

· акустические;

· оптикоэлектронные;

· микроволновые;

· вибрационные;

· емкостные;

· телевизионные.

Контактные датчики реагируют на замыкание или размыкание контактов, на обрыв тонкой проволоки или полоски фольги. Они бывают электроконтактными, магнитоконтактными, ударноконтактными и обрывными.

Электроконтактные датчики представляют собой кнопочные выключатели, которые размыкают (замыкают) электрические цепи, по которым сигнал тревоги поступает на приемно-контрольное устройство при несанкционированном открывании дверей, окон, люков, шкафов и т.д. К электроконтактным относятся датчики ДЭК-3, ВК-1М, СК-1М и другие.


Поделиться:



Популярное:

  1. XXIV. ДЕСЯТЬ ВЕЩЕЙ, ПРЕДСТАВЛЯЮЩИХ БОЛЬШУЮ ЦЕННОСТЬ В СРАВНЕНИИ С ДРУГИМИ
  2. Ассортимент и пищевая ценность крупы
  3. Биологическая ценность белков.
  4. В замкнутой системе момент импульса не изменяется со временем
  5. В любом случае пол изменяется вследствие того или иного давления среды.
  6. Действие уголовного закона во времени. Обратная сила уголовного закона и особенности ее применения в отношении лиц, отбывающих наказание.
  7. Документ - это информация на любом материальном носителе (глиняные дощечки, бумага, кинопленка, магнитная лента, компакт-диск и т.д.), предназначенная для распространения в пространстве и времени.
  8. Европейская философия нового времени.
  9. И тогда приходит осознание величайшей из всех иллюзий – иллюзии времени.
  10. Информационная ценность для руководства концерна
  11. Информационная ценность для руководства предприятия
  12. Иррациональное направление в эстетике Нового времени. (эстетика барокко)


Последнее изменение этой страницы: 2016-07-14; Просмотров: 792; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.095 с.)
Главная | Случайная страница | Обратная связь