Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Разговоры о подстановках и эвристических методах




«Мы еще помним, на какой вопрос пытаемся ответить? Или уже заменили его вопросом полегче? »

«Мы рассматриваем вопрос, добьется ли этот кандидат успеха, но, похоже, ответ даем на вопрос, хорошо ли он держится во время интервью. Давайте не будем делать подстановки».
«Ей нрав ится проект, поэтому она считает, что затраты на него невелики, а выгоды много. Хороший пример эвристики аффекта».

«Мы используем прошлогодние показатели в качестве эвристической модели, чтобы дать оценку потенциальной стоимости компании через несколько лет. Насколько пригодна такая модель? Какая еще информация нам нужна? »

В таблице ниже приведен перечень характерных черт и действий, относящихся к Системе 1. Каждое предложение в действительном залоге заменяет утверждение в страдательном залоге, более точное с технической точки зрения, но более сложное для понимания, смысл которого заключается в том, что соответствующее событие внутри разума случается автоматически и быстро. Я надеюсь, что этот перечень поможет вам выработать интуитивное «чувство личности» выдуманной Системы 1. Как и у многих известных вам персонажей, у вас будут возникать предчувствия насчет того, что Система 1 сделала бы в других обстоятельствах, и бо́ льшая част ь ваших предчувствий будет верной.
Характеристики Системы 1

• Порождает впечатления, чувства и склонности; когда Система 2 принимает их, они становятся убеждениями, позициями и намерениями.
• Действует автоматически и быстро, почти или совсем без усилий и без ощущения сознательного контроля.
• Может быть запрограммирована Системой 2 на мобилизацию внимания для обнаружения определенной модели (то есть на проведение поиска).
• После соответствующего обучения умело реагирует на стимулы и раздражители и порождает квалифицированные предчувствия.
• Создает когерентную модель активированных идей в ассоциативной памяти.
• Соединяет ощущение когнитивной легкости с иллюзиями правды, приятными чувствами и пониженной бдительностью.
• Отделяет неожиданное от обычного.
• Предполагает прич ины и намерения или придумывает их.
• Пренебрегает неоднозначностью и подавляет сомнения.
• Предрасположена верить и подтверждать.
• Преувеличивает эмоциональную согласованность (эффект ореола).
• Сосредоточивается на существующих доказательствах и игнорирует те, которых нет (WYSIATI: что ты видишь, то и есть).
• Генерирует ограниченный набор базовых оценок.
• Представляет множества при помощи норм и прототипов; не интегрирует.
• Сопоставляет уровень интенсивности различных шкал (например, размера и громкости).
• Вычисляет больше, чем намеревалась («мысленная дробь»).
• Иногда подставляет более легкий вопрос вместо трудного (эвристические методы).
• Более чувствительна к переменам, чем к состояниям (теория перспектив)*.
• Переоценивает малые вероят ности*.
• Демонстрирует снижающуюся чувствительность к количеству (психофизика)*.
• Реагирует на потери сильнее, чем на выигрыши (неприятие потерь)*.
• Заключает задачи принятия решений в узкие рамки, изолируя их друг от друга [1 -   Подробнее об этом рассказывается в 4-й части книги (прим. автора).].

 


Часть II
Методы эвристики и искажения

 

10
Закон малых чисел


Исследование частоты рака почки, проведенное в 3141 округе США, выявило удивительную закономерность: самый низкий уровень заболеваемости обнаружен в сельских, малонаселенных округах, расположенных в традиционно республиканских штатах на Среднем Западе, Юге и Западе. Что вы думаете по этому поводу?
Ваш разум в последние несколько секунд был очень активен, причем работала преимущественно Сист ема 2. Вы планомерно искали в памяти информацию и формулировали гипотезы. Вам понадобились некоторые усилия: у вас расширились зрачки, измеримо участилось сердцебиение. Но и Система 1 не бездельничала: работа Системы 2 полагалась на факты и предложения, извлеченные из ассоциативной памяти. Вы, вероятно, отвергли мысль о том, что республиканские политические взгляды защищают от рака почки. Скорее всего, в итоге вы сосредоточились на том факте, что округа с низким уровнем заболеваемости в основном сельские. Остроумные статистики Говард Вейнер и Харрис Цверлинг, приводя в пример это исследование, прокомментировали: «Очень легко и соблазнительно сделать вывод, что низкий уровень заболеваемости – прямое следствие здоровой сельской жизни: воздух чистый, вода тоже, еда свежая и без добавок». Очень разумно.
Рассмотрим теперь округа с самым высоким уровнем заболеваемости раком почки. Эти нездоровые округа в основном сельские, малонаселенные и расположены в традиционно респ убликанских штатах на Среднем Западе, Юге и Западе. Вейнер и Цверлинг в шутку комментируют: «Легко предположить, что высокий уровень заболеваемости – прямое следствие бедности сельской жизни: хорошая медицина далеко, пища жирная, злоупотребление алкоголем и табаком». Конечно же, что-то не так. Сельская жизнь не может служить одновременным объяснением и для высокого, и для низкого уровня заболеваемости раком почки.
Основной фактор здесь – не то, что округа сельские или в основном республиканские. Все дело в том, что население сельских округов малочисленно. Главный урок, который нужно усвоить, касается не эпидемиологии, а сложных отношений между нашим разумом и статистикой. Система 1 отлично приспособлена к одной форме мышления – она автоматически и без усилий опознает каузальные связи между событиями, иногда даже в тех случаях, когда связи не существует. Услышав об округах с высоким уровнем заболеваемости, вы немедленно заключили, что они чем-то отличаются, что у э той разницы есть объяснение. Однако, как мы увидим, Система 1 не слишком способна управляться с «чисто статистическими» фактами, которые меняют вероятность результатов, но не заставляют их случаться.
Случайное событие – по определению – не подлежит объяснению, но серии случайных событий ведут себя чрезвычайно регулярным образом. Представьте себе сосуд, наполненный небольшими шариками. Половина из них – красные, половина – белые. Затем представьте очень терпеливого человека (или робота), который вслепую достает по четыре шарика, записывает число красных, бросает их обратно и повторяет так много-много раз. Если обобщить результаты, то обнаружится, что сочетание «два белых, два красных» появляется почти в шесть раз чаще, чем «четыре белых» или «четыре красных». Это соотношение – математический факт. Результат многократного извлечения шариков из урны можно предсказать с той же точностью, как результат удара молотком по яйцу. Предсказать, как именно разлетятся осколки скорлупы, вы не сможете, но в целом вы уверены в результате. Впрочем, есть одно различие: удовлетворенное ощущение причинной связи, которое вы испытываете, думая о молотке и яйце, в случае с шариками напрочь отсутствует.
С этим связан и другой статистический факт, относящийся к примеру о раке. Из одного и того же сосуда два очень терпеливых экспериментатора по очереди достают шарики. Джек в каждой попытке вытаскивает по 4 штуки, а Джилл – по 7. Они оба делают отметку каждый раз, когда им достаются шарики одного цвета, все белые или все красные. Если достаточно долго этим заниматься, то Джек будет наблюдать такие результаты примерно в 8 раз чаще Джилл (ожидаемый процент составляет 12, 5 и 1, 56 % соответственно). И вновь ни молотка, ни причины, просто математический факт: наборы из 4 шариков чаще дают однородные результаты, чем наборы из 7.
А теперь представьте население США шариками в огромном сосуде, причем некоторые шарики помечены буквами «Р П», что говорит о раке почки. Вы извлекаете наборы шариков и по очереди населяете каждый округ. Выборки в сельских местностях меньше остальных. Как и в игре Джека и Джилл, экстремумы – то есть очень высокие и/или очень низкие уровни заболеваемости раком – с большей вероятностью окажутся в малонаселенных округах. Вот и вся история.
Мы начали с факта, который требует объяснения: уровень заболеваемости раком почки сильно меняется в зависимости от округа, и в этих изменениях есть закономерность. Я предложил статистическое объяснение: экстремумы (высокие и низкие показатели) вероятнее появятся в маленьких выборках, чем в больших. Это – не причина. Маленькое население округа не порождает рак и не спасает от него. Оно просто позволяет уровню заболеваемости быть намного выше (или намного ниже), чем в более многочисленной популяции. Истина состоит в том, что объяснять здесь нечего. На самом деле уровень заболеваемости раком не выше и не ниже нормы; если в округе маленькое население, она лишь кажется такой в отдельно взятом году из-за случайности выборки. Если повторить анализ на следующий год, мы заметим, что в целом ситуация с экстремумами в малых выборках та же, но округа, где в предыдущем году было много случаев рака, необязательно и на этот раз покажут высокий уровень заболеваемости. Если так, то разница между плотно населенными и сельскими округами не считается, это просто артефакты, то есть явления, порожденные исключительно каким-то аспектом метода исследования, в данном случае – различиями в размере выборки.
Вы, может, и удивились моему рассказу, но не восприняли его как откровение. Вам давно известно, что результаты исследований надежнее на больших выборках, и о законе больших чисел слышали даже те, кто статистики совершенно не знает. Но просто «знать» недостаточно, и, возможно, вы обнаружите, что в отношении вас справедливы следующие утверждения:

• Вы не придали значения признаку «малонаселенный», когда читали историю об исследовании частоты заболеваний раком.
• Вы сильно удивились, узнав о разнице между выборками в 4 и 7 шариков.
• Даже сейчас вам требуются определенные умственные усилия, чтобы понять, что следующие два утверждения означают совершенно одно и то же:
– Большие выборки дают более точный результат, чем маленькие.
– Маленькие выборки чаще больших дают экстремумы.

Первое утверждение кажется истинным, но нельзя считать, что вы его поняли, пока интуиция не приняла второе.
Итак, вы знали, что результаты на больших выборках точнее, но сейчас вы, наверное, понимаете, что знали это не очень хорошо. Вы не одиноки. Наше с Амосом первое совместное исследование показало, что даже у опытных исследователей плохая интуиция и зыбкое представление о значении объема выборки.

 

Закон малых чисел

Мое сотрудничество с Амосом в 1970-е годы началось с дискуссии об утверждении, что люди обладают интуитивным статистическим чутьем, даже если их статистике не обучали. На семинаре Амос рассказал нам об исследователях из Мичиганского университета, которые в целом оптимистично относились к интуитивной статистике. Меня эта тема очень волновала по личным причинам: незадолго до того я обнаружил, что я – плохой интуитивный статистик, и мне не верилось, что я хуже других.
Для психолога-исследователя изменчивость выборки – не просто странность, это неудобство и помеха, которая дорого обходится, превращая любое исследование в игру случая. Предположим, вы хотите подтвердить гипотезу, что словарный запас шестилетних девочек в среднем больше, чем словарный запас мальчиков того же возраста. В объеме всего населения гипотеза верна, у девочек в шесть лет словарный запас в среднем больше. Однако девочки и мальчики бывают очень разными, и можно случайно выбрать группу, где за метной разницы нет, а то и такую, где мальчики набирают больше баллов. Если вы – исследователь, такой результат вам дорого обойдется, поскольку, потратив время и усилия, вы не подтвердите правильность гипотезы. Риск снижается только использованием достаточно большой выборки, а те, кто работает с маленькими выборками, отдают себя на волю случая.
Риск ошибки в каждом эксперименте оценивается при помощи довольно простой операции, однако психологи не пользуются вычислениями для определения размера выборки, а принимают решения в соответствии с собственным, зачастую ущербным, пониманием. Незадолго до дискуссии с Амосом я прочитал статью, прекрасно иллюстрирующую типичные ошибки исследователей. Автор отмечал, что психологи сплошь и рядом используют настолько маленькие выборки, что рискуют не подтвердить верные гипотезы с вероятностью 50 %! Ни один разумный исследователь не примет такой риск. Правдоподобным объяснением казалось то, что решения психологов относительно разм ера выборок отражали господствующие интуитивные заблуждения о диапазоне изменчивости.
Меня поразили содержащиеся в статье объяснения, проливающие свет на проблемы с моими собственными исследованиями. Как и большинство психологов, я постоянно использовал слишком маленькие выборки и часто получал бессмысленные, странные результаты, оказывавшиеся артефактами, которые порождал сам метод моих исследований. Мои ошибки были тем постыднее, что я преподавал статистику и умел вычислять размер выборки, необходимый для снижения риска неудачи до приемлемого уровня. Но я никогда этим не занимался при планировании экспериментов и, подобно другим исследователям, верил традиции и собственной интуиции, не задумываясь о проблеме всерьез. К моменту, когда Амос посетил мой семинар, я уже осознал, что моя интуиция не работает, а во время самого семинара мы быстро пришли к выводу, что ошибаются и оптимисты из Мичиганского университета.
Мы с Амосом решили выяснить, есть ли среди исследователей такие же наивные глупцы, как я, и допускают ли те же ошибки ученые, обладающие математическими знаниями. Мы разработали опросник с описанием реалистичных исследований и успешных экспериментов. Опрашиваемые должны были определить размеры выборок, оценить связанные с этими решениями риски и дать советы гипотетическим аспирантам, планирующим научно-исследовательскую работу. На конференции Общества математической психологии Амос провел опрос присутствующих (включая авторов двух учебников по статистике). Результаты оказались очевидны: я был не одинок. Почти все респонденты повторили мои ошибки. Выяснилось, что даже эксперты недостаточно внимательны к размеру выборки.
Первая статья, написанная мной в соавторстве с Амосом, называлась «Вера в закон малых чисел». В ней шутливо пояснялось, что «…интуитивная оценка размера случайных выборок, похоже, удовлетворяет закону малых чисел, гласящему, что закон больших чисел с тем же успехом применим и к малым». Также мы включили в статью настойчивую рекомендацию для исследователей относиться к своим «статистическим предчувствиям с недоверием и при любой возможности заменять впечатления вычислениями».

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 417; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь