Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Разговоры о ситуациях, где «лучше меньше»
«К дорогому продукту добавили дешевый подарок, и в итоге все стало менее привлекательно. В данном случае лучше меньше».
16
Ночью таксист совершил наезд и скрылся с места происшествия. Вам представили следующие данные: • 85 % городских такси – из «Зеленой» компании, а 15 % – из «Синей». Какова вероятность того, ч то такси, совершившее наезд, было «Синим», а не «Зеленым»? Это – стандартная задача байесовского вывода. В ней есть два пункта информации: априорная вероятность и не вполне надежные свидетельские показания. В отсутствие свидетеля вероятность того, что такси-виновник «Синее», – 15 %, то есть это априорная вероятность такого исхода. Если бы компании такси были одинаково крупными, априорная вероятность стала бы неинформативной. В таком случае вы, рассматривая только надежность свидетеля, пришли бы к выводу, что вероятность составляет 80 %. Два источника информации можно объединить по формуле Байеса. Правильный ответ – 41 %. Впрочем, вы наверняка догадываетесь, что при решении этой задачи испытуемые игнорируют априорную вероятность и выбирают свидетеля. Самый частый ответ – 80 %.
Каузальные стереотипы Теперь взгляните на ту же историю с иным представлением априорной вероятности. У вас есть следующие данные: • У обеих компаний одинаковое число машин, но «Зеленые» такси связаны с 85 % происшествий. Эти две версии математически одинаковы, но разнятся с психологической точки зрения. Те, кто ознакомился с первым вариантом задания, не знают, как пользоваться априорной вероятностью, и часто ее игнорируют. Те, кто видит второй вариант, напротив, уделяют априорной вероятности значительное внимание, и в среднем их оценки недалеки от байесовского решения. Почему? Статистическим априорным вероятностям обычно придают небольшой вес, а иногда и вообще игнорируют при наличии конкретной информации о рассматриваемом случае. Каузальная версия задачи про такси сформулирована как стереотип: «Зеленые» водители опасны. Стереотипы – это утверждения о группе, которые считаются (хотя бы условно) верными для каждого ее члена. Вот два примера: Большинство выпускников этой школы в бедном районе поступают в колледж. Эти утверждения с готовностью интерпретируются как определение склонности отдельных членов группы и вписываются в каузальную историю. Многие выпускники этой школы в бедном районе желают и идут учиться в колледж, предположительно из-за каких-то благоприятных особенностей школы. Во французской культуре и общественной жизни есть силы, заставляющие многих французов интересоваться велоспортом. Вы вспомните эти факты, когда будете обдумывать вероятность того, пойдет ли конкретный выпускник этой школы в колледж, или размышлять, стоит ли упоминать «Тур де Франс» в разговоре с недавно встреченным французом.
Каузальные ситуации Мы с Амосом составили варианты задания про такси, позаимствовав понятие каузальных априорных вероятностей у психолога Исаака Айзена. В своих экспериментах он показывал участникам краткие описания студентов, сдававших экзамены в Йельском университете, и просил оценить вероятность того, сдан ли экзамен. Каузальными априорными вероятностями манипулировали очень просто: Айзен объяснил одной группе, что описанные студенты были выбраны из потока, в котором 75 % сдали экзамен, а другой группе – что в рассмотренном потоке было лишь 25 % положительных результатов. Это – весьма существенная подстановка, поскольку априорная вероятность предполагает немедленный вывод о чрезвычайной сложност и экзамена, который успешно сдали всего 25 % студентов. Сложность экзамена – это, безусловно, один из каузальных факторов, определяющих результат каждого студента. Как и ожидалось, участники эксперимента Айзена оказались весьма чувствительны к каузальным априорным вероятностям и вероятность каждого из студентов сдать экзамен в более успешном потоке оценили выше, чем при условии множества провалов. Экспериментатор, преимущественно интересующийся причинами неудачи, составил выборку, в которой 75 % студентов не сдали экзамен. Обратите внимание на разницу. Эта априорная вероятность – чисто статистическая информа ция о выборке, из которой извлекли рассматриваемые экземпляры. Она никак не связана с заданным вопросом, то есть сдал каждый отдельно взятый студент экзамен или провалил. Как и ожидалось, эксплицитно указанные априорные вероятности повлияли на оценочные суждения в гораздо меньшей степени, чем статистически эквивалентные каузальные априорные вероятности. Система 1 справляется с историями, где между элементами есть каузальная связь, но слаба в статистических рассуждениях. Разумеется, с байесовской точки зрения эти версии эквивалентны. Возникает соблазн заключить, что мы пришли к удовлетворительному выводу: каузальные априорные вероятности активно используются, а статистические факты в той или иной степени игнорируются. Но следующее исследование – одно из моих любимых – показывает, что ситуация гораздо сложнее.
Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 450; Нарушение авторского права страницы