Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Взаимодействие рентгеновского и гамма-излучения с веществом



Электромагнитное излучение - распространяющиеся в пространстве переменные электрические и магнитные поля, изменяющиеся с одинаковой частотой.

Источник электромагнитных излучений – движущиеся заряженные частицы (электроны и др.).

Электромагнитное излучение – электромагнитное поле

Электромагнитное излучение – это электромагнитное поле способное распространяться наиболее далеко от своего источника (движущихся зарядов), медленно затухая с расстоянием.

1. Электромагнитная волна распространяется независимо от ее источника (что бы ни случилось с зарядом-источником, сигнал об этом не догонит уходящую электромагнитную волну).

2. Электромагнитные волны поперечны (сверху – поперечная, снизу продольная волна).

3. Векторы напряженности электрического Е (В/м) и магнитного полей Н (А/м) перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны.

4. На глаз, фотоприемники и многие другие объекты оказывает воздействие только электрический вектор Е.

Электромагнитное излучение характеризуется:

• длиной волны λ или частотой ν .

Связь между ними: λ = с / ν , где с = 299 792 458 м/с (300 тыс. км/с. );

• Энергией, эВ (МэВ).

• Скорость распространения электромагнитных волн определяется электрическими и магнитными свойствами среды:

ε и μ – диэлектрическая и магнитная проницаемости вещества,

• ε 0 и μ 0 – электрическая и магнитная постоянные: ε 0 = 8, 85419·10–12 Ф/м, μ 0 = 1, 25664·10–6 Гн/м.

• Скорость электромагнитных волн в вакууме (ε = μ = 1):

• «Замедление» света в веществе обусловлено тем, что при прохождении через вещество фотоны поглощаются атомами и затем вновь испускаются.

• Между актами поглощения и испускания проходит некоторое время, вследствие чего средняя скорость фотонов в веществе меньше скорости света.

 

Источники электромагнитного излучения. Характеристика различных видов электромагнитного излучения.

Различают два основных типа источников ЭМИ:

1. В «микроскопических» источниках (атомы, молекулы) заряженные частицы скачками переходят с одного энергетического уровня на другой внутри атомов или молекул.

Испускаются гамма-, рентгеновское, ультрафиолетовое, видимое и инфракрасное, а в некоторых случаях и еще более длинноволновое излучение.

2. В «макроскопических» источниках свободные электроны проводников совершают синхронные периодические колебания.

Электрическая система может иметь самые разнообразные конфигурации и размеры.

Системы такого типа генерируют излучение в диапазоне от миллиметровых до самых длинных волн (в линиях электропередачи).

Гамма-лучи являются результатом изменения структуры ядра при радиоактивном распаде, и связанны с движением зарядов в ядре.

Рентгеновское излучение возникает при изменении направления движения электронов при бомбардировке в вакууме поверхности металлического анода электронами с большой энергией.

Ультрафиолетовое излучение, видимый свет, инфракрасное излучение является результатом колебательных и вращательных движений молекул.

Миллиметровые и сантиметровые волны генерируются клистронами и магнетронами, колебания в которых возбуждаются токами электронов.

Дециметровые и более длинные волны создаются колебательным контуром (катушка индуктивности + конденсатор).

Переменные поля очень низких частот (используются для передачи электрической энергии), создаются электромашинными генераторами тока, в которых роторы, несущие проволочные обмотки, вращаются между полюсами магнитов.

Циферблаты часов (радий, тритий, прометий-147) - дают в 4 раза большую годовую дозу, чем утечки на АЭС.

Детекторы дыма (америций-241)

Дроссели флуоресцентных светильников.

Электроннолучевые трубки телевизоров и компьютеров (рентгеновское излучение).

Маяки (цезий-137)

В таможенном деле используются в основном два типа искусственных источников излучения:

• линейные ускорители электронов и

• рентгеновские трубки.

 

Ионизирующие излучения. Свойства, проникающая способность.

Естественные источники ИИ

• космическое излучение

• земная радиация (торий-232, уран и продукты их распада (радон, радий и др.), калий-40, рубидий-87, и др.)

• внутреннее облучение от естественных источников

Искусственные источники ИИ

• ядерное оружие

• атомные реакторы

• рентгеновские установки и ускорители элементарных частиц

 

Космическое излучение – электромагнитное или корпускулярное излучение, имеющее внеземной источник

Интенсивность космического излучения быстро растет до высоты 20 км. Затем уменьшается. С высоты 50 км практически постоянно.

Различают первичное (галактическое и солнечное) и вторичное космическое излучение.

Первичное космическое излучение приходит непосредственно из космоса. Это поток элементарных частиц высокой энергии:

• протоны (90%),

• альфа-частицы (7%),

• ядра тяжелых элементов c Z> 20 (~ 1%).

Причина появления первичного космического излучения – ускорение частиц происходить при их столкновении с движущимися межзвездными магнитными полями.

Заряженные частицы от Солнца способны достигать Земли через 15-20 мин после того, как вспышка на его поверхности становится видимой. Длительность вспышки может достигать нескольких часов.

Вторичное космическое излучение – результат взаимодействия первичного излучения с ядрами атомов земной атмосферы.

Во вторичном излучении встречаются практически все элементарные частицы.

В составе вторичного излучения различают мягкий и жесткий компоненты.

Мягкий компонент (сильно поглощаются свинцом) – результат взаимодействия гамма излучения с энергией более 2 МэВ с веществом (эффект образования пары электрон-позитрон).

Жесткий компонент – мюоны (масса 207 me, но обладают больной проникающей способностью, время жизни – 2, 2·10-6с).

Мюоны – продукт распада ядерно-активных частиц π -мезонов (пионов)

Радиоактивность земной коры:

В настоящее время в Земной коре содержатся следующие естественные радионуклиды:

влияющих на биосферу:

40К (1, 31·109лет), 232Th (1, 4·1010лет), 235U (7, 13·108лет), 238U ( 4, 5·109лет);

не влияющие на биосферу:

• из-за большого период полураспада (> 1016 лет) - 48Со, 87Rb, 96Zr, 130Te.

• из-за очень низкого содержания – 138La, 176Lu, 187Re.

В магматических породах наивысшее содержание урана в гранитах.

В осадочных породах наибольшей радиоактивностью обладают глины, сланцы и фосфатные породы, калийные соли.

В 1972 г в Западной Африке в Габоне (Окло) обнаружена радиоактивная аномалия – на которой около 2 млрд. лет назад в течение 105 -106 лет протекали процессы, обусловленные цепной реакцией деления 235U. (содержание урана в песчанике достигало 1 %, а во включениях до 20%)

В природном уране 2·109 лет назад содержалось ~ 3, 7 % 235U.

 

29. Особенности воздействия ионизирующих излучений на биологические объекты. ИЗ ИНТЕРНЕТА!

Изучение действия ионизирующих излучений на биологические объекты началось практически одновременно с их открытием. Актуальность и дальнейшее продолжение изучения действия радиации на организмы обусловлены расширением контактов человека и всего живого с радиационным воздействием. Действие всех видов ионизирующих излучений на живые организмы и их сообщества изучает радиобиология. Фундаментальной задачей радиобиологии является выявление общих закономерностей биологической реакции организма на радиационное воздействие. Решение этой задачи позволит разработать пути и методы управления лучевыми реакциями организма, а также найти средства защиты и восстановления организма от воздействия излучений. К настоящему времени в радиобиологии имеется ряд проблем и нерешенных вопросов. Основная проблема — проблема радиочувствительности. Нет однозначного ответа, почему радиочувствительность организмов варьирует в очень широких пределах.
В стадии изучения находятся также такие вопросы, как механизм дей­ствия ионизирующих излучений, действие на организм малых доз радиации, особенности действия на организм хронического облуче­ния инкорпорированных радионуклидов, отдаленные последствия облучения, радиационное нарушение иммунитета, радиопротекторная защита организма и др.
Ионизирующие (или ядерные) излучения возникают при распаде ядер радиоактивных элементов. Они невидимы и обнаруживаются по различным явлениям, происходящим при их действии на вещество. Опасность для биологических объектов связана с особенностями, которые присущи только ядерным излучениям. Они обладают высокой энергией, превышающей внутримолекулярную и межмолекулярную энергию связей атомов и молекул, проникают внутрь облучаемого объекта и передают ему свою энергию, вызывая при этом ионизацию и возбуждение атомов и молекул, разрывают химические связи в молекулах, т.е. вызывают радиолиз молекул. При облучении и после облучения формируются различные повреждения, которые проявляются на разных уровнях — от атомного и молекулярного до организменного.
Ионизирующие излучения обладают высокой биологической активностью. Они могут вызывать ионизацию любых химических соединений, биосубстратов, а также радиолиз молекул с образованием активных радикалов, что приводит к возникновению многочисленных и длительных реакций в живых клетках и тканях. Результатом биологического действия радиации является нарушение нормальных биохимических процессов с последующими функциональными и морфологическими изменениями в клетках и тканях.
Все радиобиологические реакции начинаются одинаково, т.е. с формирования молекулярных и клеточных повреждений в результате передачи им энергии излучения, и заканчиваются физиологическими и морфологическими изменениями в облученном организме.
В механизме биологического действия ионизирующих излучений на живые объекты выделяют ряд последовательных этапов, объединенных между собой причинно-следственными связями:
1.Физико-химический этап (ионизация и возбуждение атомов и молекул)
2.Химический этап (образование свободных радикалов)
3.Биомолекулярный этап (повреждения белков, нуклеиновых кислот и других биомолекул)
4.Ранние биологические эффекты (гибель клеток, гибель организма)
5.Отдаленные биологические эффекты (опухоли, ге­нетические эффекты, гибель организма и т. д.)

Таким образом, начальное действие ионизирующих излучений происходит на атомном и молекулярном уровнях, затем, с течением времени, проявляется на клеточном, тканевом, органном и организменном уровнях.

30. Единицы измерения ионизирующих излучений. Пределы доз облучения. ИЗ ИНТЕРНЕТА!

Эффективность взаимодействия ионизирующего излучения с веществом зависит от типа излучения, энергии частиц и сечения взаимодействия облучаемого вещества. Важные показатели взаимодействия ионизирующего излучения с веществом:

  • линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества.
  • поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества.

В Международной системе единиц СИ единицей поглощённой дозы является грэй ( Гр, англ. gray , Gy ), численно равный поглощённой энергии в 1 Дж на 1 кг массы вещества. Иногда встречается устаревшая внесистемная единица рад (англ. rad ): доза, соответствующая поглощенной энергии 100 эрг на 1 грамм вещества. 1 рад = 0, 01 Гр.

Также широко применяется устаревающее понятие экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Для этого обычно используют внесистемную единицу экспозиционной дозы рентген ( Р, англ. roentgen , R ): доза фотонного излучения, образующего ионы с зарядом в 1 ед. заряда СГСЭ ((1/3)·10− 9 кулон) в 1 см³ воздуха. В системе СИ используется единица кулон на килограмм ( Кл/кг, англ. C/kg): 1 Кл/кг = 3876 Р; 1 Р = 2, 57976·10− 4 Кл/кг.[9]

Активность радиоактивного источника ионизирующего излучения определяется как среднее количество распадов ядер в единицу времени. Соответствующая единица в системе СИ беккерель (Бк, англ. Becquerel, Bq) обозначает количество распадов в секунду. Применяется также внесистемная единица кюри (Ки, англ. Ci). 1 Ки = 3, 7·1010 Бк. Первоначальное определение этой единицы соответствовало активности 1 г радия-226.

Корпускулярное ионизирующее излучение также характеризуется кинетической энергией частиц. Для измерения этого параметра наиболее распространена внесистемная единица электронвольт (эВ). Как правило радиоактивный источник генерирует частицы с определенным спектром энергий. Датчики излучений также имеют неравномерную чувствительность по энергии частиц.

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации)

Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

  • персонал — лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

 

31. Основные способы регистрации ионизирующих излучений. ИЗ ИНТЕРНЕТА!

К основным и наиболее часто применяемым методам ре­гистрации относятся следующие: ионизационные, оптические (сцинтилляционные), химические и фотографические.
Ионизационный метод основан на регистрации эффекта ионизации, т. е. на измерении величины заряда ионов, возни­кающих под действием ионизирующего излучения. Измерить ионизационный эффект можно при помощи электрического поля, которое препятствует рекомбинации ионов и придает им направленное движение к соответствующим электродам.
В качестве детекторов используют ионизационные камеры, пропорциональные счетчики, счетчики Гейгера—Мюллера, полупроводниковые детекторы и др. Эти детекторы, кроме полупроводниковых, представляют собой наполненные газом баллоны с двумя вмонтированными электродами. К электро­дам подведено напряжение постоянного тока. Детектор вклю­чается в электрическую цепь. При прохождении ионизирую­щей частицы через газовую среду образуются ионы, которые собираются на электродах. Положительные ионы движутся к катоду, отрицательные — к аноду. В электрической цепи образуется ионизационный ток, который регистрируется измерителем тока. По значению этого тока можно судить об интенсивности излу­чения или отсчитывать число зарегистрированных частиц. Протекание тока наблюдается до тех пор, пока на газ дей­ствует излучение. В противном случае ток в цепи не проте­кает, так как газ является изолятором.
Взаимодействуя с веществом, ядерное излучение наряду с ионизацией производит возбуждение атомов и молекул. Через некоторое время (в зависимости от вещества) возбуж­денные атомы и молекулы переходят в невозбужденное со­стояние с выделением энергии во внешнюю среду. У некото­рых веществ (сернистый цинк, йодистый натрий, антрацен, стильбен, нафталин и др.) такой переход сопровождается испусканием энергии возбуждения в виде квантов видимого инфракрасного и ультрафиолетового света. Внешне это про­является в виде вспышек света — сцинтилляций, которые можно зарегистрировать с помощью соответствующих прибо­ров. На регистрации сцинтилляций, возникающих в определенных веществах при облучении их ионизирующими излу­чениями, и основаны оптические методы.
Принцип работы сцинтилляционного детектора следующий: под действием излучений происходит ионизация и возбуждение атомов. При переходе атомов из ионизированных и возбужденных состояний в основное высвечивается энергия в виде вспышки света (сцинтилляции), которая может быть зарегистрирована различными способами. Лучший из них состоит в преобразовании энергии света в электрический сигнал с помощью оптически связанного со сцинтиллятором фотоэлектронного умножителя
энер­гий.
Химические методы основаны на том, что часть поглощен­ной энергии излучения переходит в химическую, что вызывает цепь химических превращений. Определение наличия излуче­ния, его интенсивности производится по выходу химических реакций. Например, при облучении водного раствора FeSO4 ионы двухвалентного железа Fe2+ превращаются в ионы трехвалентного железа Fe3+. Одновременно при этом изме­няется электрический потенциал и окраска раствора, что мож­но легко определить соответствующими способами.
Фотографические методы основаны на способности излу­чения разлагать галогениды серебра AgCl или AgBr, входя­щие в состав чувствительных фотоэмульсий, до металлическо­го серебра. В результате такого взаимодействия вдоль трека (следа прохождения) альфа- и бета-частиц выделяются зерна серебра и при проявлении фотопластинки виден след пробега ядерных частиц — почернение. По характеру трека можно определить вид, интенсивность и энергию излучения.

 

32. Принципы атомно-эмиссионной и атомно-абсорбционной спектроскопии. (из тетради по лекции так как в мудле еще не выложено)

АЭС: Исследуемое вещество вводится в пламя и регистрирует спектр излучения, испускаемого электронами внешних оболочек атома при их переходе с верхнего уровня на боле низкий.

ААС: Изменение величины поглощения луча света, проходящего через атомный пар исследуемой пробы.

Методы атомизации в ААС:

- нагревание

- воздействие ЭМИ или заряженных частиц.

Через атомный пар пропускается свет(источник света узкополосный и для каждого вещества индивидуален)

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 1268; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.035 с.)
Главная | Случайная страница | Обратная связь