Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Физические свойства и химический состав почвы



Говоря о гигиеническом значении почвы, необходимо, прежде всего, остановиться на понятии – «здоровая почва». Крупнейшие гигиенисты нашей страны (А.А. Минх, Н.И. Хлебников, Р.А. Бабаянц) – под «здоровой почвой понимали крупнозернистую, легко проницаемую, незагрязненную почву, имеющую оптимальный механический состав (соотношение глины и песка), и наилучшие водно-воздушные свойства для интенсивных процессов самоочищения (табл. 3.15). Такая почва обеспечивает надлежащие санитарно-эпидемиологические условия, что предупреждает многие заболевания.

Критерии здоровой почвы(таблица)

Почва, или земля, – природное образование, залегающее между атмосферой и подстилающими породами. Толщина почвы достигает от нескольких сантиметров до 2 м и более. Почва состоит из материнской породы (минеральные соединения), мертвого органического вещества; гумуса (перегноя); живых организмов, воздуха и воды.

На вертикальном разрезе почвы можно увидеть несколько слоев, или горизонтов. Последовательность этих горизонтов называется почвенным профилем. Верхний, или пахотный, слой почвы содержит корни растений, грибы, микроорганизмы, множество различных почвенных насекомых и животных. В этом горизонте происходит основной круговорот органических веществ. Весь неиспользованный органический материал из различных трофических уровней вновь утилизируется и распадается здесь с начала до гумуса, а в конечном итоге до неорганических соединений.

Гумус состоит из лигнина, клетчатки, протеиновых комплексов и других органических соединений. Гуминовые кислоты, которые входят в состав гумуса, представляют собой высокомолекулярные соединения, образовавшиеся из продуктов распада лигнина, клетчатки, белков, жиров и углеводов. Гумус способствует сохранению воды в почве и поддерживает ее в рыхлом состоянии.

Подпочва, расположенная под верхним слоем почвы, содержит органические соединения, которые образовались в результате разложения органических веществ.

Третий слой почвы – материнская порода, на основе которой образовалась почва. Этот слой состоит в основном из глины, песка, извести, ила, включающих соли кальция, алюминия и другие макро- и микроэлементы.

Тип почвы, образующийся в конкретном регионе, зависит от климата данной территории, хотя растения, животные и материнская порода вносят свой вклад в формирование почвы. Процесс образования почвы идет очень медленно, занимая в зонах умеренного климата тысячи лет.

Типы почв различаются определенными комбинациями почвенных горизонтов. В зависимости от соотношения песка и глины все почвы делятся на песчаные, супесчаные, глинистые и суглинистые. На территории России встречаются более 90 видов почв, из них 7 наиболее часто: тундровые; дерново-подзолистые; серые лесные; чернозем; каштановые; сероземы; красноземы.

Структура почвы зависит от взаиморасположения твердых минеральных и органических компонентов и степени заполнения пор в ней воздухом и водой. Определяют следующие структурные типы почв: сыпучую, связанную (агрегатную), трещиноватую, комковатую.

Почвенные вода и воздух определяют пористость, воздухо- и водопроницаемость, влагоемкость, капиллярность, тепловой режим почвы.

Почвенная вода. Почва оказывает огромное влияние на свойства и состав подземных вод и воды открытых водоемов. Почва всегда содержит то или иное количество влаги, поступившей с атмосферными осадками или поднявшейся по капиллярам из нижележащих слоев земли, а также образовавшейся в результате поглощения паров воды из атмосферного воздуха. Вода необходима для существования живых организмов и роста растений. Гигиеническое значение почвенной воды велико и разнообразно. Она служит универсальным растворителем органических и минеральных соединений, транспортом для доставки химических веществ растениям. Почвенная влага существенно влияет на тепловые свойства почвы, увеличивая ее теплоемкость и теплопроводность. Из почвенных вод образуются грунтовые воды. Химический и бактериальный состав питьевой воды во многом определяется составом и свойствами почвы.

Почвенный воздух. Его количество определяется свойствами и характером почв. Почвенный воздух постоянно обменивается с атмосферным воздухом. Почвенный воздух даже чистых почв всегда содержит повышенное по сравнению с атмосферным количеством углекислого газа (до 8%), содержание кислорода снижается до 14%. При ограниченном доступе воздуха в толще отбросов развиваются гнилостные процессы с выделением зловонных газов и паров (сероводород, аммиак, фтористый водород, индол, скатол, метилмеркаптан), способных в соответствующих концентрациях токсически воздействовать на организм человека. Гигиеническое значение почвенного воздуха определяется его составом и условиями контакта с ним человека.

Пористость. Под пористостью почвы следует понимать суммарный объем пор в единице объема почвы, выраженный в процентах. Чем выше пористость, тем ниже фильтрационная способность почвы. Так, пористость песчаной почвы составляет 40%, торфяной – 82%. При пористости 50-65% в почве создаются оптимальные условия для самоочищения от биологических и химических загрязнителей. При более высокой пористости процесс самоочищения почвы самозамедляется. Почва такого типа считается неудовлетворительной.

Воздухопроницаемость. Под воздухопроницаемостью понимают способность почвы пропускать воздух. Это свойство почвы определяется прежде всего величиной ее пор. Воздухопроницаемость увеличивается с ростом барометрического давления и уменьшается с увеличением величины слоя и влажности почвы. Высокая проницаемость почвы для воздуха способствует обогащению ее кислородом, что имеет большое гигиеническое значение, так как повышает биохимические процессы окисления органических веществ.

Водопроницаемость. Под водопроницаемостью или фильтрационной способностью понимают способность почвы впитывать и пропускать воду, поступающую с поверхности. Это свойство почвы оказывает решающее влияние на образование почвенных вод и накопление их запасов в недрах земли. Водопроницаемость почвы имеет непосредственное отношение к снабжению населения водой из подземных источников.

Влагоемкость. Под влагоемкостью почвы понимают количество влаги, которое почва способна удерживать сорбционными и капиллярными силами. Влагоемкость тем больше, чем меньше поры почвы и чем больше их суммарный объем. Гигиеническое значение этого свойства почвы связано с тем, что большая влагоемкость создает предпосылки для сырости почвы и находящихся на ней зданий, уменьшает проницаемость почвы для воздуха. Такие почвы являются нездоровыми, сырыми и холодными.

Капиллярность почвы. Под капиллярностью почвы понимают ее способность поднимать по капиллярам воду из нижних горизонтов в верхние. Чем менее зерниста почва, т.е. чем более она мелкопористая, тем больше ее капиллярность тем выше поднимается по ней вода. Большая капиллярность почвы может быть причиной сырости зданий.

Температура почвы. От температуры почвы в значительной степени зависят температура приземного слоя атмосферы, тепловой режим помещений подвалов и первых этажей зданий. Температура почвы существенно влияет на жизнедеятельность почвенных организмов и процессы самоочищения. Быстрее нагреваются каменистые и сухие почвы со склоном, обращенным на юг и юго-восток.

Крупные зернистые почвы, как правило, обладают хорошей воздухо- и водопроницаемостью, мелкозернистые – значительной водоемкостью, высокой гигроскопичностью и капиллярностью. В гигиеническом отношении для жилищного и коммунального строительства следует выбирать участки с крупнозернистой почвой.

Почвенные организмы. Существа, живущие в почве, оказывают на нее прямое и косвенное воздействие. Среди них есть лучистые грибы (актиномицеты), водоросли, бактерии, вирусы, которые образуют почвенную флору. Кроме того, в почве обитают одноклеточные организмы, простейшие, нематоды, клещи, многохвостки, пауки, улитки, жуки, личинки и куколки мух, дождевые черви, позвоночные животные, представляющие почвенную фауну. Количество организмов подвержено существенным колебаниям, что обусловлено составом и химическими свойствами почвы, температурным режимом, солнечной радиацией, аэрацией, механической обработкой почвы и др.

Химический состав почвы

Химический состав почвы является отражением элементарного состава всех геосфер, принимающих участие в формировании почвы. Поэтому в состав всякой почвы входят те элементы, которые распространены или встречаются как в литосфере, так и в гидро-, атмо- и биосфере.

В состав почв входят почти все элементы периодической системы Менделеева. Однако подавляющее их большинство встречается в почвах в очень малых количествах, поэтому в практике приходится иметь дело всего с 15 элементами. К ним принадлежат прежде всего четыре элемента органогена, т. е. С, N, О и Н, как входящие в состав органических веществ, затем из неметаллов S, Р, Si и С1, а из металлов Na, К, Са, Mg, AI, Fe и Мn.

Перечисленные 15 элементов, составляя основу химического со­става литосферы в целом, в то же время входят в зольную часть растительных и животных остатков, которая, в свою очередь, образуется за счет элементов, рассеянных в массе почвы. Количе­ственное содержание в почве этих элементов различно: на первое место надо поставить О и Si, на второе — А1 и Fe, на третье — Са и Mg, а затем — К и все остальные.

Нормальный рост растений обусловлен содержанием в почве доступных форм зольных элементов и азота. Обычно растения усваивают из почвы N, Р, К, S, Са, Mg, Fe, Na, Si в достаточно больших количествах и эти элементы называются макроэлементами, а В, Mn, Mo, Сu, Zn, Со, F используются в ничтожных количествах и называются микроэлементами. К важнейшим из них относятся элементы, без которых невозможно образование белков, — N, Р, S, Fe, Mg; такие элементы, как К, Сu, Mg, Na, оказывают огромное влияние на регуляцию работы клеток и формирование различных тканей растений.

Элементы питания, содержащиеся в почвах, находятся в различных минеральных и органических соединениях, и запасы их обычно значительно превышают ежегодную потребность. Однако большая часть их находится в форме, не доступной для растений: азот — в органическом веществе, фосфор — в фосфатах, железо, алюминий, кальций, калий — в поглощенном состоянии, кальций и магний — в форме карбонатов, т. е. в не растворимой в воде форме. Процесс усвоения растениями элементов питания происходит благодаря обменному поглощению. Формы соединений и биологическое значение химических элементов различны. Элементы входят в состав почв в форме различных химических соединений, характеризующих тип почвы, и имеют разное биологическое значение.

Кислород в свободном состоянии находится в почвенном воздухе, а в связанном входит в состав воды, окислов, гидратов, кислородных кислот и их солей. Он имеет важное значение, как элемент, необходимый для дыхания растений и животных, и как элемент-органоген.

Кремний входит в состав силикатов, т. е. солей кремниевых, алюмокремниевых и феррокремниевых кислот, а также встречается в виде кремнезема, как кристаллического (кварц), так и аморфного. Биологическое значение кремния не выяснено, но он всегда содержится в золе растений (в особенности камыша и тростника) и, по-видимому, необходим для образования клеток и тканей более твердых частей организмов.

Алюминий входит в состав алюмосиликатов, глинозема и гидратов глинозема. Биологического значения он не имеет.

Железо входит в состав ферросиликатов и других солей, как окисных, так и закисных, а также в состав гидратов железа. Биологическое значение его велико: с ним связано образование хлорофилла в зеленых растениях.

Кальций встречается преимущественно в виде солей разных кислот, чаще всего угольной. Он очень важен для растений, так как входит в состав стеблей, и обычно находится в растительных клетках в виде кристаллов щавелевокислого кальция.

Магний, как и кальций, встречается в виде аналогичных соединений. Он важен для растений, так как входит в состав хлорофилла.

Натрий и калий входят в состав солей различных кислот, причем натрий биологического значения не имеет, тогда как калий является одним из основных элементов питания растений и, в частности, играет большую роль в крахмалообразовании.

Фосфор входит в состав почвы в виде фосфатов и в виде различных органических соединений. Он содержится в ядре растительных клеток. Известно, что недостаток в почве фосфора отражается на качестве зерна. Он является одним из основных питательных элементов и необходим для развития растений так же, как и азот.

Азот — исключительно важный для питания растений, элемент- органоген, входящий в состав молекулы белков основы растительной и животной клетки, Встречается в почве в форме различных органических соединений, аммиачных солей и солей азотной и азотистой кислот.

Сера также входит в состав молекулы белков. В почвах встречается в форме сульфатов, сернистых солей, сероводорода и различных органических соединений.

Водород важен для растений как органоген. Входит в состав воды, гидратов, разнообразных свободных кислот и их кислых солей.

Хлор биологического значения не имеет. В почве встречается в виде хлористых солей.

Углерод входит в состав растительных остатков и составляет в среднем 45 % их массы. Как основа всех органических соединений он имеет исключительно большое значение. Встречается в почве также и в форме минеральных соединений углекислого газа и солей угольной кислоты.

Марганец, как предполагают, играет роль катализатора. Определенное биологическое значение имеют также и многие другие химические элементы, встречающиеся в почвах в очень малых количествах (например, медь, цинк, фтор, бор и другие), так называемые микроэлементы. Некоторые из них используются в качестве минеральных удобрений. Однако наибольшее значение для питания растений имеют соли калия, кальция, магния, железа и кислот — азотной, фосфорной, серной и угольной.

 


Поделиться:



Популярное:

  1. I. 1.Дерново-подзолистые почвы.
  2. I. Основные физические явления и процессы в электрических аппаратах
  3. Виды атипизма: морфологический, биохимический, функциональный, иммунологический.
  4. Водные свойства почвы: понятие, значение. Пути поддержания влажности почв в оптимальных потребностях для сельскохозяйственных культур.
  5. Глава 3. Физические функции как основа ВПФ
  6. Глава 8. ФИЗИКО – ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ В МАТЕРИАЛОВЕДЕНИИ
  7. Гранулометрический состав почв и пород. Классификация механических элементов. Химический и минералогический состав гранулометрических фракций. Скелетность почв.
  8. Дентин.Химический состав, строение, физические свойства, функции, болевая чувствительность. Первичный, вторичный, третичный дентин.
  9. Дерново-карбонатные, дерново-бурые почвы. Распространение, классификация, свойства. Использование этих почв в условиях Пермского края.
  10. Дерново-подзолистые почвы. Распространение, классификация, свойства. Использование этих почв в условиях Пермского края.
  11. ДОЖДЕВЫЕ ЧЕРВИ – СОЗИДАТЕЛИ ПОЧВЫ
  12. Загрязнение и самоочищение почвы


Последнее изменение этой страницы: 2016-08-24; Просмотров: 2006; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь