Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


I. Основные физические явления и процессы в электрических аппаратах



Введение

Электрические аппараты (ЭА) – это электротехнические устрой­ства, применяемые при использовании электрической энергии, начи­ная от ее производства, передачи, распределения и кончая потребле­нием. Разнообразие видов ЭА и различие традиций мировых элект­ротехнических школ затрудняют их классификацию.

В настоящее время под ЭА понимают электротехнические уст­ройства управления потоком энергии и информации. При этом речь может идти о потоках энергии различного вида: электрической, механической, тепловой и др. Например, потоком механической энергии от двигателя к технологической машине может управлять электромагнитная муфта. Потоками тепловой энергии можно управ­лять при помощи электромагнитных клапанов и заслонок. Таких примеров использования ЭА можно привести большое количество. Примером использования ЭА для управления информацией является применение реле в телефонии. Например, при создании телеграфного аппарата П.Л. Шиллинг в 1820г. применил впервые электромагнит­ное реле. Простейшая формально-логическая обработка дискретной информации также была реализована на реле.

Однако наибольшее распространение получили ЭА для управления потоками электрической энергии для изменения режимов работы, регулирования параметров, контроля и защиты электротехнических систем и их составных частей. Как правило, функции таких ЭА осуществляются посредством коммутации (включения и отключения) электрических цепей с различной частотой, начиная от относительно редких, нерегулярных значений до периодических высокочастотных, например, в импульсных регуляторах напряжения.

Одним из основных признаков классификации ЭА является напря­жение. Различают аппараты низкого напряжения (АНН) – до 1000 В и аппараты высокого напряжения (АВН) – свыше 1000 В.

Большинство аппаратов низкого напряжения условно можно разделить на следующие основные виды:

аппараты управления и защиты – автоматические выключатели, контакторы, реле, пускатели электродвигателей, переключатели, рубильники, предохранители, кнопки управления и другие аппараты, управляющие режимом работы оборудования и его защитой;

аппараты автоматического регулирования – стабилизаторы и регуляторы напряжения, тока, мощности и других параметров элек­трической энергии;

аппараты автоматики – реле, датчики, усилители, преобразо­ватели и другие аппараты, осуществляющие функции контроля, усиления и преобразования электрических сигналов.

Следует отметить, что АНН иногда классифицируют по величине коммутируемого тока: слаботочные (слаботоковые) –до 10 А и сильноточные (сильнотоковые) – свыше 10 А. При этом нижние пределы надёжно коммутируемых современными электрическими аппаратами токов достигают 10-9 А, а напряжений - 10-5 В.

Аппараты высокого напряжения работают в сетях с напряжением до 1150 кВ переменного тока и 750 кВ постоянного тока и также существенно различаются по своим функциям. В настоящем учебном пособии аппараты высоко напряжения не рассматриваются.

Электрические аппараты как низкого, так и высокого напряжения обычно являются конструктивно законченными техническими уст­ройствами, реализующими определенные функции и рассчитанными на разные условия эксплуатации.

В основе большинства электромеханических ЭА лежит контактная система с различными типами приводов - ручным, электромагнит­ным, механическим и др. Процессы, протекающие в ЭА, определя­ются различными и многообразными физическими явлениями, которые изучаются в электродинамике, механике, термодинамике и других фундаментальных науках.

Одной их наиболее сложных задач, решаемых при разработке электромеханического электронного аппарата, является обеспечение работоспособности электрических контактов, в том числе и при гашении электрической дуги, возникающей при выключении ЭА.

По принципу работы электрические аппараты подразделяются на контактные и бесконтактные. Первые имеют подвижные контактные части, и воздействие на управляемую цепь осуществляется путем замыкания или размыкания этих контактов. Бесконтактные аппараты не имеют коммутирую­щих контактов. Эти аппараты осуществляют управление путем изменения своих электрических параметров (индуктивности, ёмкости, сопротивления и т.д.).

Контактные аппараты могут быть автоматическими и неавтоматическими. Автоматические – это аппараты, приходящие в действие от заданного режима работы цепи или машины. Неавтоматические – это аппараты, действие которых зависит только от оператора. Они могут управляться дистанционно или непосредственно.

Требования, предъявляемые к электрическим аппаратам, чрезвычайно раз­нообразны и зависят от назначения, условий применения и эксплуатации аппарата. Кроме специфических требований, относящихся к данному аппарату, все электрические аппараты должны удовлетворять некоторым общим требо­ваниям:

1. Каждый электрический аппарат при работе обтекается рабочим током, при этом в токоведущих частях выделяется определенное количество теплоты и аппарат нагревается. Температура не должна превосходить неко­торого определенного значения, устанавливаемого для данного аппарата и его деталей.

2. В каждой электрической цепи может быть ненормальный (перегрузка) или аварийный (короткое замыкание) режим работы. Ток, протекающий по аппарату в этих режимах, существенно (в 50 и более раз) превышает номинальный, или рабочий, ток. Аппарат подвергается в течение определен­ного времени чрезмерно большим термическим и электродинамическим воз­действиям тока, однако он должен выдерживать эти воздействия без каких-либо деформаций, препятствующих дальнейшей его работе.

3. Каждый электрический аппарат работает в цепи с определенным напряжением, где возможны также и перенапряжения. Однако электрическая изоляция аппарата должна обеспечивать надежную работу аппарата при задан­ных значениях перенапряжений.

4. Контакты аппаратов должны быть способны включать и отключать все токи рабочих режимов, а многие аппараты – также и токи аварийных режимов, которые могут возникнуть в управляемых и защищаемых цепях.

5. К каждому электрическому аппарату предъявляются тре­бования по надежности и точности работы, а также по быстродействию.

6. Любой электрический аппарат должен, по возможности, иметь наимень­шие габариты, массу и стоимость, быть простым по устройству, удобным в обслуживании и технологичным в производстве.

 

 

I. Основные физические явления и процессы в электрических аппаратах

Контактные явления в электрических аппаратах

Электрический контакт – соприкосновение тел, обеспечивающее протекание тока в электрической цепи. Соприкасающиеся тела называются также контактами или контакт-деталями.

 

Износ контактов

Под износом контактов понимают разрушение рабочей поверхности ком­мутирующих контактов, приводящее к изменению их геометрической формы, размера, массы и т.д.

Износ, происходящий под действием электрических факторов, называется электрическим износом – электрической эрозией контактов. Износ под действием механических факторов здесь не рассматривается, он обычно много меньше электрического.

При размыкании сила, сжимающая контакты, снижается до нуля, резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Площадка сильно разогревается, и между расходящимися контактами образуется контактный перешеек (мостик) из расплавленного металла, который в дальнейшем рвется. При этом в промежутке между контактами могут возникнуть различные формы электрического разряда.

Мостиковую эрозию контактов можно объяснить термоэлек­трическими эффектами, приводящими к асимметрии расплавлен­ного металлического мостика (рис. 2.5), что в конечном счете приводит к переносу материала с одного контакта на другой.

В результате термоэлектрических эффектов максимум темпе­ратуры приходится не на середину расплавленного мостика Ма смещен от нее на в сторону переноса теплоты. При разрыве он нарушается по изотерме с темпе­ратурой T max и на одном участке остается больше металла, чем на другом. Застывший металл при большом числе отключений образует неправильные формы контактов. Эффектные меры борьбы с эрозией состоят в создании симметрич­ных тепловых режимов мостика, например, подбором соответст­вующих контактных пар.

Электрическая эрозия наблюдается при небольших токах; при больших токах характерен дуговой износ контактов. Он опреде­ляет коммутационную износостойкость аппарата, его способность выполнять определенное число коммутаций тока контактами в заданных условиях отключения цепи. Она выражается предель­ным для аппарата числом коммутационных циклов. Механическая износостойкость аппарата определяется его способностью выпол­нять определенное число операций отключения и отключения без тока в цепи главных контактов.

Рис. 2.5. Фазы мостиковой эрозии контактов

 

Дуговой износ контактов – это выгорание материала контактов под воздействием электрической дуги.

Энергия, сосредоточенная в небольших объемах, разогревает металл, плавит его и доводит до температуры кипения. Материал контактов выбрасывается в виде паров металла и капель.

Относительную дугостойкость различных металлов можно оценить на основании диаграммы (рис. 2.6). Она построена по результатам опытов с короткой дугой (0, 8 мм) при токе 12 кА и продолжительности его протекания 0, 0085 с. По оси ординат отложено отношение объёмного износа к количеству электричества прошедшему через промежуток в форме газового разряда.

Рис. 2.6. Сопоставление удельного износа контактов

 

Общие сведения о материалах

Материалы, применяемые в аппаратостроении, могут быть разбиты на следующие группы:

- проводниковые – медь, алюминий, латунь и др.;

- магнитные – различного рода электротехнические стали и сплавы для изготовления магнитопроводов;

- изоляционные – для электрической изоляции токоведущих частей друг от друга и от заземлённых элементов;

- дугостойкие изоляционные – асбест, керамика, пластмассы для дугогасительных камер;

- сплавы с высоким удельным сопротивлением – для изготовления различных резисторов;

- контактные – серебро, медь, металлокерамика для обеспечения высокой электрической износостойкости контактов;

- биметаллы – применяются в автоматических аппаратах, использующих линейное удлинение различных металлов при нагревании электрическим током;

- конструкционные – металлы, пластмассы и изоляционные материалы, служащие для придания аппаратам и их деталям тех или иных форм и для изготовления деталей, преимущественным назначением которых является передача и восприятие механических усилий.

 

1.3.2. Материалы для контактных соединений

К материалам контактов предъявляются следующие требования:

- высокая электрическая проводимость и большая теплопро­водность;

- стойкость против коррозии в воздухе и других газах;

- стойкость против образования окисных плёнок с высоким удельным сопротивлением;

- малая твердость для уменьшения необходимой си­лы нажатия;

- высокая твердость для уменьшения механического износа при частых включениях и отключениях;

- малая электрическая эрозия;

- высокая дугостойкость (температура плавления);

- высокие значения тока и напряжения, необходи­мые для дугообразования;

- простота обработки, низкая стоимость.

Для контактных соединений применяются следующие материалы, свойства которых рассмот­рены ниже.

Медь. Положительные свойства: высокие электрическая прово­димость и теплопроводность, достаточная твердость, что позволяет применять при частых включениях и отключениях.

Недостатки: низкая температура плавления, на воздухе образуется плёнка прочных окислов, имеющих высокое сопро­тивление, требует больших сил нажатия. Для защиты меди от окисления поверхность контактов покрывается электролитическим способом слоем серебра толщиной 20—30 мкм. На главных контак­тах иногда ставятся серебряные пластинки (в аппаратах, включае­мых относительно редко). Применяется как материал для плоских и круглых шин, контактов аппаратов высокого напряжения, контак­торов, автоматов и др. Вследствие низкой дугостойкости нежелатель­но применение в аппаратах, отключающих мощную дугу и имеющих большое число включений в час.

Серебро. Положительные свойства: высокая электропроводность и тепло­проводность, плёнка окислов серебра имеет малую механическую проч­ность и быстро разрушается при нагреве контактной точки. Устойчивость контакта и малое переходное сопротивление являются характерными свойствами серебра.

Отрицательные свойства: малая дугостойкость и недостаточная твердость серебра препятствуют использованию его при наличии мощной дуги и при частых включениях и отключениях. Применяется при токах до 20 А.

Алюминий. Этот материал имеет достаточно высокую электри­ческую проводимость и теплопроводность. Благодаря малой плот­ности токоведущая часть круглого сечения из алюминия на такой же ток, как и медный проводник, имеет почти на 48% меньшую массу. Это позволяет уменьшить массу аппарата.

Недостатки алюминия: образование на воздухе и в актив­ных средах плёнок с высокой механической прочностью и высоким сопротивлением; низкая дугостойкость (температура плавления значительно меньше, чем у меди и серебра); малая механическая прочность; при контакте с медью образуется пара, подверженная сильной электрохимической коррозии. В связи с этим при механическом соединении с медью алюминий должен покрываться тонким слоем меди электро­литическим путем либо оба металла необходимо покрывать се­ребром.

Алюминий и его сплавы (дюраль, силумин) применяются глав­ным образом как материал для шин и конструкционных деталей ап­паратов. Для коммутирующих контактов алюминий непригоден.

Вольфрам. Положительными свойствами вольфрама являются высокая дугостойкость, большая стойкость против эрозии и сварива­ния. Высокая твердость вольфрама позволяет применять его при частых включениях и отключениях.

Недостатками вольфрама являются: высокое удельное сопротив­ление, малая теплопроводность, образование прочных оксидных и сульфидных пленок. В связи с высокой механической прочностью и образованием пленок вольфрамовые контакты требуют большой силы на­жатия.

Платина, золото, молибден. Применяются для коммутирующих контактов на очень малые токи при малых нажатиях. Платина и золото не образуют окисных плёнок. Контакты из этих металлов имеют малое переходное сопротивление. Для повышения износостойкости применяют сплавы из платины с иридием, молибденом или палладием.

Металлокерамические материалы. Рассмотрение свойств чистых металлов показывает, что ни один из них не удовлетворяет полно­стью всем требованиям, предъявляемым к разрывным контактам.

Материалы, обладающие желаемыми свойствами, получают методом порошковой металлургии. Металлокерамика – это механическая смесь двух практически не сплавляющихся металлов, получаемая методом спекания смеси их порошков при высокой температуре и давлении. Физические свойства металлов при изготовлении металлокерамических контак­тов сохраняются. Дугостойкость керамике сообщается такими ме­таллами, как вольфрам, молибден. Для получения низкого переход­ного сопротивления контакта в качестве второго компонента используют серебро или медь. Наиболее распространёнными композициями металлокерамики являются: серебро – вольфрам; серебро – молибден; серебро – никель; серебро – окись кадмия; серебро – графит; серебро – окись меди и др.

Электрическая дуга

В коммутационных электрических аппаратах, предна­значенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0, 1 А, а напряжение на контактах достигает величины 250 – 300 В. Такой разряд встречается либо на контактах ма­ломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

Основные свойства дугового разряда:

- дуговой разряд имеет место только при токах большой величины; минимальный ток дуги для металлов со­ставляет примерно 0, 5 А;

- температура центральной части дуги очень вели­ка и в аппаратах может достигать 6000 – 18000 К;

- плотность тока на катоде чрезвычайно велика и достигает 102 – 103 А/мм2;

- падение напряжения у катода составляет всего 10 – 20 В и практически не зависит от тока.

В дуговом разряде можно различить три характер­ные области: околокатодную, область столба дуги (ствол дуги) и околоанодную (рис. 2.2.).

В каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимо­сти от условий, которые там существуют. Поскольку ре­зультирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обес­печивающие возникновение необходимого количества за­рядов.

 

Рис. 2.2. Распределение напряжения и напряжённости электрического поля

в стационарной дуге постоянного тока

 

Термоэлектронная эмиссия. Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.

При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так назы­ваемое катодное пятно (раскаленная площадка), которое служит основа­нием дуги и очагом излучения элект­ронов в первый момент расхождения контактов. Плотность тока термо­электронной эмиссии зависит от тем­пературы и материала электрода. Она невелика и может быть достаточной для возникновения электрической ду­ги, но она недостаточна для ее го­рения.

Автоэлектронная эмиссия. Это –явление испускания электронов из ка­тода под воздействием сильного электрического поля.

Место разрыва электрической цепи может быть представлено как конден­сатор переменной емкости. Емкость в начальный момент равна бесконеч­ности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.

Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дугового разряда.

Таким образом, возникновение дугового разряда на расходящихся контак­тах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.

Ионизация толчком. Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.

Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации.

Потенциал ионизации для газов составляет 13 – 16 В (азот, кислород, водород) и до 24, 5 В (гелий), для паров металла он примерно в два раза ниже (7, 7 В для паров меди).

Термическая ионизация. Это – процесс ионизации под воздействием высокой температуры. Поддержание дуги после ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объяс­няется основным и практически единственным видом ионизации – термической ионизацией.

Температура столба дуги с среднем равна 6000 – 10000 К, но может достигать и более высоких значений – до 18000 К. При такой температуре сильно возрастает как число быстро движущихся частиц газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть их разрушается, образуя заряженные частицы, т.е. происходит иони­зация газа. Основной характеристикой термической ионизации является сте­пень ионизации, представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одновременно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации.

Деионизация происходит главным образом за счет рекомбинации и диф­фузии.

Рекомбинация. Процесс, при котором различно заряженные частицы, при­ходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.

В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.

Диффузия. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.

Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в столбе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур столба дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.

Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Картина изменения падения напряжения UД и напряжённости электрического поля (продольного градиента напряжения) ЕД = dU/dx вдоль дуги приведена на рисунке (см. рис 2.2). Под градиентом напряжения ЕД по­нимается падение напряжения на единицу длины дуги. Как видно из рисунка, ход харак­теристик UД и ЕД в приэлектродных областях резко отличается от хода характе­ристик на остальной части дуги. У электродов, в прикатодной и прианодной об­ластях, на промежутке дли­ны порядка 10– 4 см имеет место резкое падение напря­жения, называемое катод­ным Uк и анодным Uа. Значение этого падения на­пряжения зависит от мате­риала электродов и окружа­ющего газа. Суммарное зна­чение прианодного и прикатодного падений напряжений составляет 15 – 30 В, градиент напряжения достигает 105 – 106 В/см.

В остальной части дуги, называемой столбом дуги, падение напряжения UД практически прямо пропорционально длине дуги. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100 – 200 В/см.

Околоэлектродное падение напряжения UЭ не зависит от длины дуги, падение напряжения в столбе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке

UД = UЭ + ЕД lД,

где: ЕД – напряжённость электрического поля в столбе дуги;

lД – длина дуги; UЭ = Uк + Uа.

В заключение следует ещё раз отметить, что в стадии дугового разряда преобладает термическая ионизация – разбиение атомов на электроны и положительные ионы за счёт энергии теплового поля. При тлеющем – возникает ударная ионизация у катода за счет соударения с электронами, разгоняемыми электри­ческим полем, а при таунсендовском разряде ударная ионизация пре­обладает на всём промежутке газового разряда.

 

Дуги постоянного тока

Важнейшей характеристикой дуги является зависимость напряжения на ней от величины тока. Эта характерис­тика называется вольтамперной. С ростом тока i уве­личивается температура дуги, усиливается термическая ионизация, возрастает число ионизированных частиц в разряде и падает электрическое сопротивление дуги rд.

Напряжение на дуге равно irд.При увеличении тока сопротивление дуги уменьшается так резко, что напря­жение на дуге падает, несмотря на то, что ток в це­пи возрастает. Каждому значению тока в установившем­ся режиме соответствует свой динамический баланс числа заряженных частиц.

При переходе от одного значения тока к другому тепловое состояние дуги не изменяется мгновенно. Дуго­вой промежуток обладает тепловой инерцией. Если ток изменяется во времени медленно, то тепловая инерция разряда не сказывается. Каждому значению тока со­ответствует однозначное значение сопротивления дуги или напряжения на ней.

Зависимость напряжения на дуге от тока при мед­ленном его изменении называется статической вольтамперной характеристикой дуги.

Статическая характеристика дуги зависит от рас­стояния между электродами (длины дуги), материала электродов и параметров среды, в которой горит дуга.

Статические вольтамперные характеристи­ки дуги имеют вид кривых, изображенных на рис. 2.3.

 

Рис. 2.3. Статические вольтамперные характеристики дуги

 

Чем больше длина дуги, тем выше лежит ее статическая вольтамперная характеристика. С ростом давления среды, в которой горит дуга, также увеличивается на­пряженность ЕДи поднимается вольтамперная характе­ристика аналогично рис. 2.3.

Охлаждение дуги существенно влияет на эту ха­рактеристику. Чем интенсивнее охлаждение дуги, тем больше от нее отводится мощность. При этом должна возрасти мощность, выделяемая дугой. При заданном токе это возможно за счет увеличения напряжения на дуге. Таким образом, с ростом охлаждения вольтампер­ная характеристика располагается выше. Этим широко поль­зуются в дугогасительных устройствах аппаратов.

 

Дуги постоянного тока

Если ток в цепи изменяется медленно, то току i1 со­ответствует сопротивление дуги rД1, абольшему току i2 соответствует меньшее сопротивление rД2, что отражено на рис 2.4. (см. статичес­кую характеристику дуги – кривая А).

 

Рис. 2.4. Динамическая вольтамперная характеристика дуги.

В реальных установках ток может меняться довольно быстро. Вследствие тепловой инерции дугового столба изменение сопротивления дуги отстает от изменения то­ка.

Зависимость напряжения на дуге от тока при быст­ром его изменении называется динамической вольтамперной характеристикой.

При резком возрастании тока динамическая характеристика идет выше статической (кривая В), так как при быстром росте тока сопротивление дуги падает мед­леннее, чем растет ток. При уменьшении – ниже, по­скольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С).

Динамическая характеристика в значительной степе­ни определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бес­конечно малое по сравнению с тепловой постоянной вре­мени дуги, то в течение времени спада тока до нуля со­противление дуги останется постоянным. В этом случае динамическая характеристика изобразится прямой, про­ходящей из точки 2 в начало координат (прямая D), т. е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.

 

Постоянного тока

Контакторы постоянного тока предназначены для ком­мутации цепей постоянного тока и, как правило, приводятся в действие электромагнитом постоянного тока.

Общие технические требования к контакторам и усло­вия их работы регламентированы ГОСТ 11206—77. Ниже описываются категории применения современных контак­торов и приводятся параметры коммутируемых ими цепей в зависимости от характера нагрузки.

Контакторы постоянного тока:

ДС-1 — активная или малоиндуктивная нагрузка.

ДС-2—пуск электродвигателей постоянного тока с парал­лельным возбуждением и их отключение при но­минальной частоте вращения.

ДС-3—пуск электродвигателей с параллельным возбуж­дением и их отключение при неподвижном состо­янии или медленном вращении ротора.

ДС-4—пуск электродвигателей с последовательным воз­буждением и их отключение при номинальной час­тоте вращения.

ДС-5—пуск электродвигателей с последовательным воз­буждением, отключение неподвижных или мед­ленно вращающихся двигателей, торможение про­тивотоком.

Общие требования к контакторам:

1.Высокая включающая и отключающая способность – не ниже 10Iном, а в отдельных случаях до 20Iном;

2. Длительная работа при большой частоте отключений;

3. Высокая коммутационная износостойкость – до 3 млн. циклов с учетом отключений пусковых токов;

4. Высокая механическая износостойкость;

5. Технологичность конструкции, малая масса и габариты;

6. Высокая надёжность в эксплуатации.

Для контакторов существует еще режим редких комму­таций, характеризуемый более тяжелыми условиями, чем при нормальных коммутациях. Такие режимы возникают довольно редко (на­пример, при КЗ).

Основными техническими данными кон­такторов являются номинальный ток главных контак­тов, предельный отключаемый ток, номинальное напря­жение коммутируемой цепи, механическая и коммутацион­ная износостойкость, допустимое число включений в час, собственное время включения и отключения. Способность контактора, как и любого коммутационного аппарата, обе­спечить работу при большом числе операций характеризу­ется износостойкостью.

Различают механическую и комму­тационную износостойкость. Механическая износостойкость определяется числом циклов включение-отключение кон­тактора без ремонта и замены его узлов и деталей. Ток в цепи при этом равен нулю. Механическая износостойкость современных контакторов составляет (10—20)106 опера­ций.

Коммутационная износостойкость определяется таким числом включений и отключений цепи с током, после кото­рого требуется замена контактов. Современные контакторы должны иметь коммутационную износостойкость порядка (2—3)106 операций (некоторые выпускаемые в настоящее время контакторы имеют коммутационную износостойкость 106 операций и менее).

Собственное время включения состоит из времени нарастания потока в электромагните контактора до значения потока трогания и времени движения якоря. Большая часть этого времени тратится на нарастание магнитного потока. Для контакторов постоянного тока с номинальным током 100 А собственное время включения составляет 0, 14с, для контакторов с током 630 А оно увеличивается до 0, 37с.

Собственное время отключения - время с момента обесточивания электромагнита контактора до момента размы­кания его контактов. Оно определяется временем спада по­тока от установившегося значения до потока отпускания. Временем с начала движения якоря до момента размыка­ния контактов можно пренебречь. В контакторах постоян­ного тока с номинальным током 100 А собственное время отключения составляет 0, 07, в контакторах с номинальным током 630 А — 0, 23 с.

Номинальный ток контактора Iном представляет собой ток, который можно пропускать по замкнутым главным контактам в течение 8 часов без коммутаций, причем превышение температуры различных частей контактора не должно быть больше допустимого (прерывисто-продолжительный режим работы).

Номинальный рабочий ток контактора Iном.р - это допустимый ток через его замкнутые главные контакты в конкретных условиях применения. Так, напри­мер, номинальный рабочий ток Iном.р контактора для ком­мутации асинхронных двигателей с короткозамкнутым ро­тором выбирается из условий включения шестикратного пускового тока двигателя.

Номинальным напряжением называется наибольшее напряжение коммутируемой цепи, для работы при котором предназначен контактор. Коммутационная износостойкость главных контактов для категорий ДС-2, ДС-4 в ре­жиме нормальных коммутаций должна быть не менее 0, 1, а для категорий ДС-3 не менее 0, 02 механической износостойкости. Вспомогательные контакты должны ком­мутировать цепи электромагнитов переменного тока, у ко­торых пусковой ток может во много раз превышать устано­вившийся.

Контактор имеет следующие основные узлы: контакт­ную систему, дугогасительное устройство, электромагнит и систему вспомогательных контактов. При подаче напря­жения на обмотку электромагнита контактора его якорь притягивается. Подвижный контакт, связанный с якорем электромагнита, замыкает или размыкает главную цепь. Дугогасительное устройство обеспечивает быстрое гашение дуги, благодаря чему достигается малый износ контактов. Система вспомогательных слаботочных контактов служит для согласования работы контактора с другими устройст­вами.

Контактная система. Контакты аппарата подвержены наиболее сильному электрическому и меха­ническому износу ввиду большого числа операций в час и тяжелым условиям работы. С целью уменьшения изно­са преимущественное распространение получили линей­ные перекатывающиеся контакты.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 3818; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.088 с.)
Главная | Случайная страница | Обратная связь