Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Фототранзистор и фототиристор
Выходные характеристики фототранзистора подобны выходным характеристикам обычного биполярного транзистора, в котором положение характеристик определяется не током базы, а уровнем освещенности (или величиной светового потока). Свойства фототиристора подобны свойствам обычного тиристора, однако с той лишь особенностью, что включение тиристора осуществляется не с помощью импульса тока управления, а с помощью светового импульса.
Операционные усилители Операционный усилитель (ОУ) – это высококачественный усилитель, предназначенный для усиления как постоянных, так и переменных сигналов. Вначале такие усилители использовались в аналоговых вычислительных устройствах для выполнения математических операций (сложения, вычитания и т. д.). Это объясняет происхождение термина «операционный». В настоящее время операционные усилители широко используются в виде полупроводниковых интегральных схем. Эти схемы содержат большое число (десятки) элементов (транзисторов, диодов и т. д.), но по размерам и стоимости приближаются к отдельным транзисторам. Операционные усилители удобно использовать для решения самых различных задач преобразования и генерирования маломощных сигналов, поэтому эти усилители очень широко применяются на практике. Рассмотрим наиболее широко используемые разновидности операционных усилителей, для питания которых применяются два источника напряжения (обычно +15 В и –15 В). По-другому это называется питанием от источника с нулевым выводом или от расщепленного источника. Условное графическое обозначение операционного усилителя показано на рис. 7.1. Рис. 7.1. Графическое обозначение операционного усилителя Обозначение общего вывода «0V» расшифровывается как «ноль вольт». Для пояснения назначения выводов на рис. 7.2 приведена типовая схема на операционном усилителе – схема инвертирующего усилителя.
Рис. 7.2. Инвертирующий усилитель на основе операционного усилителя Если входное напряжение uвх достаточно мало по модулю, то выходное напряжение uвых определяется выражением . Часто на схемах выводы +U, –U и 0V не указывают (но подразумевают) и используют упрощенное условное графическое обозначение (рис. 7.3). При этом приведенная на рис. 7.2 типичная схема приобретает упрощенный вид (рис. 7.4).
Рис. 7.3 Рис. 7.4 Обозначим напряжения на выводах операционного усилителя (рис. 7.5). Рис. 7.5
Напряжение uдиф между инвертирующим и неинвертирующим входами называют дифференциальным напряжением (дифференциальным сигналом). Ясно, что . Операционные усилители конструируют таким образом, чтобы они как можно больше изменяли напряжение uвых при изменении дифференциального сигнала (т. е. разности ) и как можно меньше изменяли напряжение uвых при одинаковом изменении напряжений и . Пусть uдиф=0. Обозначим синфазное напряжение (синфазный сигнал) . Операционные усилители конструируют таким образом, чтобы влияние синфазного сигнала на выходное напряжение было как можно меньше. Передаточная характеристика. Операционный усилитель хорошо характеризует его передаточная характеристика – зависимость вида , где f – некоторая функция. График этой зависимости для операционного усилителя К140УД1Б приведен на рис. 7.6. Эта конкретная характеристика не проходит через начало координат. Значение напряжения uдиф, при котором выполняется условие uвых=0, называют напряжением смещения нуля и обозначают через Uсм. Для операционного усилителя типа К140УД1 известно, что напряжение Uсм лежит в диапазоне от –10 мВ до + 10 мВ. А это означает, что при нулевом напряжении uдиф напряжение uвых может лежать в пределах от минимально возможного (около –7 В) до максимально возможного (около +10 В).
Рис. 7.6. Передаточная характеристика операционного усилителя К140УД1Б Для того, чтобы при нулевом сигнале на входе напряжение на выходе было равно нулю, т. е. для того, чтобы передаточная характеристика проходила через начало координат, предусматривают меры по компенсации напряжения смещения (балансировка, коррекция нуля, настройка нуля). В некоторых операционных усилителях для компенсации напряжения смещения предусмотрены специальные выводы. Типовая схема включения операционного усилителя типа К140УД8А, в котором предусмотрены такие выводы, представлена на рис. 7.7.
Рис. 7.7. Схема включения операционного усилителя К140УД8А
Через NC обозначены специальные выводы для балансировки. Цифрами обозначены номера выводов. Диапазон выходного напряжения, соответствующий почти вертикальному участку передаточной характеристики, называется областью усиления. Соответствующий этому диапазону режим работы называют режимом усиления (линейным, активным режимом). В линейном режиме , где К – коэффициент усиления по напряжению (коэффициент усиления напряжения, коэффициент усиления дифференциального сигнала). Обычно величина К лежит в пределах 104…105. Например, для операционного усилителя типа К140УД1Б К=1350…12000, для операционного усилителя К140УД14А К не менее 50000. Диапазоны выходного напряжения вне области усиления называются областями насыщения. Соответствующий этим областям режим называют режимом насыщения. Реальные электронные устройства на основе операционных усилителей практически всегда имеют коэффициент усиления значительно меньше К, так как в них используется отрицательная обратная связь (рис. 7.2).
Интегральные микросхемы Интегральные микросхемы, или интегральные схемы (ИС) – микроэлектронное изделие (т.е. изделие с высокой степенью миниатюризации), выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки электрически соединенных элементов (или элементов и компонентов) и (или) кристаллов, которое с точки зрения требований к испытаниям, приемке, поставке и эксплуатации рассматривается как единое целое. Элемент интегральной схемы – часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента (резистора, диода, транзистора и т.д.), причем эта часть выполнена нераздельно от других частей и не может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации. Компонент интегральной схемы в отличие от элемента может быть выделен как самостоятельное изделие с указанной выше точки зрения. По конструктивно-технологическим признакам интегральные схемы обычно подразделяются на: · полупроводниковые; · гибридные; · пленочные. В полупроводниковой схеме все элементы и межэлементные соединения выполнены в объеме или на поверхности полупроводника. В таких схемах нет компонентов. Это наиболее распространенная разновидность интегральных схем. Интегральную схему называют гибридной, если она содержит компоненты и (или) отдельные кристаллы полупроводника. В пленочных интегральных схемах отдельные элементы и межэлементные соединения выполняются на поверхности диэлектрика (обычно используется керамика). При этом применяются различные технологии нанесения пленок из соответствующих материалов. По функциональным признакам интегральные схемы подразделяются на аналоговые (операционные усилители, источники вторичного электропитания и др.) и цифровые (логические элементы, триггеры и т.п.). Историческая справка. Первые опыты по созданию полупроводниковых интегральных схем были осуществлены в 1953 г., а промышленное производство интегральных схем началось в 1959 г. В 1966 г. был начат выпуск интегральных схем средней степени интеграции (число элементов в одном кристалле до 1000). В 1969 г. были созданы интегральные схемы большой степени интеграции (большие интегральные схемы, БИС), содержащие до 10000 элементов на одном кристалле. В 1971 г. были разработаны микропроцессоры, а в 1975 г. – интегральные схемы сверхбольшой степени интеграции (сверхбольшие интегральные схемы, СБИС), содержащие более 10000 элементов в одном кристалле. Предельная частота биполярных транзисторов в полупроводниковых интегральных схемах достигает 15 ГГц и более (1 ГГц=109 Гц). В настоящее время ожидается появление интегральных схем, содержащих до 100 млн МОП–транзисторов в одном кристалле (речь идет о цифровых схемах). Система обозначений. Условное обозначение интегральных микросхем включает в себя основные классификационные признаки. Оно состоит из четырех элементов. Первый элемент – цифра, соответствующая конструктивно-технологической группе. Цифрами 1, 5, 6 и 7 в первом элементе обозначаются полупроводниковые интегральные микросхемы. Гибридным микросхемам присвоены цифры 2, 4 и 8. Пленочные, вакуумные и керамические интегральные микросхемы обозначаются цифрой 3. Второй элемент, определяющий порядковый номер разработки серии, состоит из двух (от 00 до 99) или трех (от 000 до 999) цифр. Третий элемент, обозначающий подгруппу и вид микросхемы, состоит из двух букв (см. таблицу). Четвертый элемент, обозначающий порядковый номер разработки микросхемы данной серии, состоит из одной или нескольких цифр. К этим основным элементам обозначений микросхем могут добавляться и другие классификационные признаки. Дополнительная буква в начале четырехэлементного обозначения указывает на особенность конструктивного исполнения: Р – пластмассовый корпус типа ДИП; А – пластмассовый планарный корпус; Е – металлокерамический корпус типа ДИП; С – стеклокерамический корпус типа ДИП; И – стеклокерамический планарный корпус; Н – керамический «безвыводной» корпус. Серии бескорпусных полупроводниковых микросхем начинаются с цифры 7, а бескорпусные аналоги корпусных микросхем обозначаются буквой Б перед указанием серии. Через дефис после обозначения указывается цифра, характеризующая модификацию конструктивного исполнения: 1 – с гибкими выводами; 2 – с ленточными (паучковыми) выводами, в том числе на полиамидном носителе; 3 – с жесткими выводами; 4 – на общей пластине (неразделенные); 5 – разделенные без потери ориентировки (наклеенные на пленку); 6 – с контактными площадками без выводов.
Популярное:
|
Последнее изменение этой страницы: 2017-03-09; Просмотров: 637; Нарушение авторского права страницы