Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация и система обозначений тиристоров



Выпускаемые с 1980 года тиристоры имеют классификацию и систему обозначений, установленные ГОСТ 20859.1-89. В основу обозначений тиристоров положен буквенно-цифровой код, состоящий из девяти элементов.

Первый элемент (буква или буквы) обозначает вид прибора: Т – тиристор; ТЛ – лавинный тиристор; ТС – симметричный тиристор (симистор); ТО – оптотиристор; ТЗ – запираемый тиристор; ТБК – комбинированно выключаемый тиристор; ТД – тиристор-диод.

Второй элемент (буква) – подвид тиристора по коммутационным характеристикам: Ч – высокочастотный (быстро включающийся) тиристор; Б – быстродействующий; И – импульсный.

Третий элемент (цифра от 1 до 9) обозначает порядковый номер модификации (разработки).

Четвертый элемент (цифра от 1 до 9) – классификационный размер корпуса прибора.

Пятый элемент (цифра от 0 до 5) – конструктивное исполнение.

Шестой элемент – число, равное значению максимально допустимого среднего тока.

Седьмой элемент – буква Х для приборов с обратной полярностью (основание корпуса – катод).

Восьмой элемент – число, обозначающее класс по повторяющемуся импульсному напряжению в закрытом состоянии (сотни вольт).

Девятый элемент – группа цифр, обозначающая сочетание классификационных параметров: (duзс/dt). Аббревиатура «зс» означает запертое состояние.

Пример условных обозначений тиристоров по ГОСТ 20859.1–89:

ТЛ171-320-10-6 – тиристор лавинный первой модификации, размер шестигранника «под ключ» 41 мм, конструктивное исполнение – штыревое с гибким катодным выводом, максимально допустимый средний ток в открытом состоянии 320 А, повторяющееся импульсное напряжение в закрытом состоянии 1000 В (10-й класс), критическая скорость нарастания напряжения в закрытом состоянии 500 В/мкс.

 

 

Оптоэлектронные приборы

Оптоэлектронными называют приборы, которые чувствительны к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также приборы, производящие или использующие такое излучение.

Излучение в видимой, инфракрасной и ультрафиолетовой областях относят к оптическому диапазону спектра. Обычно к указанному диапазону относят электромагнитные волны с длиной от 1 нм до 1 мм, что соответствует частотам примерно от 0, 5· 1012 Гц до 5· 1017 Гц. Иногда говорят о более узком диапазоне частот – от 10 нм до 0, 1 мм (~5· 1012…5· 1016 Гц). Видимому диапазону соответствуют длины волн от 0, 38 мкм до 0, 78 мкм (частота около 1015 Гц).

На практике широко используются источники излучения (излучатели), приемники излучения (фотоприемники) и оптроны (оптопары).

Оптроном называют прибор, в котором имеется и источник, и приемник излучения, конструктивно объединенные и помещенные в один корпус.

Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников – фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Широко используются оптроны, в которых применяются пары светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор.

Основные достоинства оптоэлектронных приборов:

· высокая информационная емкость оптических каналов передачи информации, что является следствием больших значений используемых частот;

· полная гальваническая развязка источника и приемника излучения;

· отсутствие влияния приемника излучения на источник (однонаправленность потока информации);

· невосприимчивость оптических сигналов к электромагнитным полям (высокая помехозащищенность).

 

 

Излучающий диод (светодиод)

Излучающий диод, работающий в видимом диапазоне волн, часто называют светоизлучающим, или светодиодом.

Рассмотрим устройство, характеристики, параметры и систему обозначений излучающих диодов.

Устройство. Схематическое изображение структуры излучающего диода представлено на рис. 6.1, а, а его условное графическое обозначение – на рис. 6.2, б.

Излучение возникает при протекании прямого тока диода в результате рекомбинации электронов и дырок в области p-n-перехода и в областях, примыкающих к указанной области. При рекомбинации излучаются фотоны.

Характеристики и параметры. Для излучающих диодов, работающих в видимом диапазоне (длина волн от 0, 38 до 0, 78 мкм, частота около 1015 Гц), широко используются следующие характеристики:

· зависимость яркости излучения L от тока диода i (яркостная характеристика);

зависимость силы света Iv от тока диода i.

Рис. 6.1. Структура светоизлучающего диода (а)

и его графическое изображение (б)

Яркостная характеристика для светоизлучающего диода типа АЛ102А представлена на рис. 6.2. Цвет свечения этого диода – красный.

 

 

Рис. 6.2. Яркостная характеристика светодиода

 

График зависимости силы света от тока для светоизлучающего диода типа АЛ316А представлен на рис. 6.3. Цвет свечения – красный.

 

 

 

Рис. 6.3. Зависимость силы света от тока светодиода

Для излучающих диодов, работающих не в видимом диапазоне, используют характеристики, отражающие зависимость мощности излучения Р от тока диода i. Зона возможных положений графика зависимости мощности излучения от тока для излучающего диода типа АЛ119А, работающего в инфракрасном диапазоне (длина волны 0, 93…0, 96 мкм), представлена на рис. 6.4.

Приведем для диода АЛ119А его некоторые параметры:

· время нарастания импульса излучения – не более 1000 нс;

· время спада импульса излучения – не более 1500 нс;

· постоянное прямое напряжение при i=300 мА – не более 3 В;

· постоянный максимально допустимый прямой ток при t < +85°C – 200 мА;

· температура окружающей среды –60 …+85°С.

 

Рис. 6.4. Зависимость мощности излучения от тока светодиода

Для информации о возможных значениях коэффициента полезного действия отметим, что излучающие диоды типа ЗЛ115А, АЛ115А, работающие в инфракрасном диапазоне (длина волны 0, 95 мкм, ширина спектра не более 0, 05 мкм), имеют коэффициент полезного действия не менее 10 %.

Система обозначений. Используемая система обозначений светоизлучающих диодов предполагает применение двух или трех букв и трех цифр, например АЛ316 или АЛ331. Первая буква указывает на материал, вторая (или вторая и третья) – на конструктивное исполнение: Л – единичный светодиод, ЛС – ряд или матрица светодиодов. Последующие цифры (а иногда буквы) обозначают номер разработки.

 

Фоторезистор

Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра. Схематическое изображение структуры фоторезистора приведено на рис. 6.5, а, а его условное графическое изображение – на рис. 6.5, б.

Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка, увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости). Фоторезисторы часто характеризуются зависимостью тока i от освещенности Е при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика (рис. 6.6).

 

 

Рис. 6.5. Структура (а) и схематическое обозначение (б) фоторезистора

 

 

Рис. 6.6. Люкс-амперная характеристика фоторезистора ФСК-Г7

Часто используют следующие параметры фоторезисторов:

· номинальное темновое (при отсутствии светового потока) сопротивление (для ФСК-Г7 это сопротивление равно 5 МОм);

· интегральную чувствительность (чувствительность, определяемая при освещении фоторезистора светом сложного спектрального состава).

Интегральная чувствительность (токовая чувствительность к световому потоку) S определяется выражением:

,

где iф – так называемый фототок (разность между током при освещении и током при отсутствии освещения);

Ф – световой поток.

Для фоторезистора ФСК-Г7 S=0, 7 А/лм.

 

 

Фотодиод

Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7, а, а его условное графическое изображение – на рис. 6.7, б.

 

Рис. 6.7. Структура (а) и обозначение (б) фотодиода

Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак> 0 (дырки переходят к аноду, а электроны – к катоду под действием электрического поля p-n-перехода).

Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).

Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.

Рис. 6.8. Вольт-амперные характеристики фотодиода

Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n–перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n–перехода носители тока движутся к электродам (дырки – к электроду слоя p, электроны – к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.

Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).

Рис. 6.9 Рис. 6.10

 

Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107–1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).

 

Оптрон (оптопара)

Оптрон – полупроводниковый прибор, содержащий источник излучения и приемник излучения, объединенных в одном корпусе и связанные между собой оптически, электрически и одновременно обеими связями. Очень широко распространены оптроны, у которых в качестве приемника излучения используются фоторезистор, фотодиод, фототранзистор и фототиристор.

В резисторных оптронах выходное сопротивление при изменении режима входной цепи может изменяться в 107…108 раз. Кроме того, вольт-амперная характеристика фоторезистора отличается высокой линейностью и симметричностью, что обусловливает широкую применимость резистивных оптопар в аналоговых устройствах. Недостатком резисторных оптронов является низкое быстродействие – 0, 01…1 с.

В цепях передачи цифровых информационных сигналов применяются главным образом диодные и транзисторные оптроны, а для оптической коммутации высоковольтных сильноточных цепей – тиристорные оптроны. Быстродействие тиристорных и транзисторных оптронов характеризуется временем переключения, которое часто лежит в диапазоне 5…50 мкс.

Рассмотрим подробнее оптопару светодиод-фотодиод (рис. 6.11, а). Излучающий диод (слева) должен быть включен в прямом направлении, а фотодиод – в прямом (режим фотогенератора) или обратном направлении (режим фотопреобразователя). Направления токов и напряжений диодов оптопары приведены на рис. 6.11, б.

 

Рис. 6.11. Схема оптопары (а) и направление токов и напряжений в ней (б)

Изобразим зависимость тока iвых от тока iвх при uвых=0 для оптопары АОД107А (рис. 6.12). Указанная оптопара предназначена для работы как в фотогенераторном, так и в фотопреобразовательном режиме.

 

Рис. 6.12. Передаточная характеристика оптопары АОД107А

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-09; Просмотров: 683; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.034 с.)
Главная | Случайная страница | Обратная связь