Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Факторы роста фибробластов (FGFs)



Факторы роста фибробластов — многофункциональные белки, играющие важнейшую роль как в эмбриогенезе, так и в жизнедеятельности взрослого организма. Они участвуют в процессах дифференцировки и пролиферации клеток различных типов, а также в регуляции клеточной миграции и выживания, регенерации тканей, в процессах ангиогенеза и нейрогенеза.

Факторы роста фибробластов — многофункциональные белки с большим набором эффектов; чаще всего они являются митогенами, но также оказывают регуляторное, структурное и эндокринное воздействие. Функции FGFs в процессах развития включают мезодермальную индукцию, развитие конечностей и нервной системы, а в зрелых тканях или системах — регенерацию тканей, рост кератиноцитов и заживление ран [28].

Факторы роста фибробластов у человека продуцируются кератиноцитами, фибробластами, хондроцитами, эндотелиальными, гладко-мышечными, тучными, глиальными клетками и стимулируют их пролиферацию[Использование факторов роста фибробластов для ле- чения ран и ожогов / В. И. Никитенко, С. А. Павло- вичев, В. С. Полякова [и др.] // Хирургия. – 2012. – № 12. – С. 72–76].

Семейство человеческого фактора роста фибробластов (FGF) включает 23 белковых молекулы. По принципу действия их можно разделить на следующие группы:

• Лиганды к рецепторам (FFGFRs): FGF1–10, 16–23.

• Лиганды, обладающие ауто- и/или паракринным действием: FGF1–10, 16–18, 20, 22.

• Лиганды, функционирующие как гормоны: FGF19, 21, 23.

• Факторы, не способные связываться с рецепторами, также известные как FGF-гомологичные факторы: FGF11–14. Они действуют внутриклеточно. Предполагается, что белки этой группы участвуют в регуляции работы мембранных натриевых каналов [18].

Факторы роста фибробластов воздействуют на клетки через группу рецепторов (FGFRs). У человека описано 4 функционально активных рецептора к семейству белков FGF (FGFR1–4). У пятого рецептора, FGFR5, отсутствует тирозинкиназный домен, в связи с чем он, будучи способным связывать молекулы FGF, не проводит сигнал внутрь клетки, выступая, таким образом, как негативный регулятор сигнального пути FGF [28].

В норме FGFRs отвечают за развитие костно-суставной системы у позвоночных, участвуя в регуляции дифференцировки и пролиферации остеобластов и хондроцитов. Повышенная активность сигнального пути FGF у эмбриона и детей приводит к развитию аномалий скелета, включая карликовость и краниосиностозные синдромы, ахондроплазии. Во взрослом организме FGFs вовлечены в процессы физиологического и патологического ангиогенеза [Baird A., Bohlen P., Fibroblast growth factors, in Peptide growth factors and their receptors I. 1990, Springer. p. 369–418.].

FGFs осуществляют свои функции в клетке через классический сигнальный путь, включающий в себя активацию PI3K/AKT, MAPK, PLC сигнальных каскадов, а также активацию транскрипционных факторов STAT. В свою очередь, STAT путь приводит к экспрессии генов, ответственных за такие клеточные процессы как рост, дифференцировка, апоптоз [Turner N., Grose R., Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer, 2010. 10 (2): p. 116–129].

Локализация FGFs может быть различной: их можно обнаружить во внеклеточном матриксе, в цитоплазме, а также в ядре клетки. Находясь в экстрацеллюлярном пространстве, FGFs образуют комплексы с гепарин сульфат протеогликанами (ГСП) матрикса. Взаимодействие с рецептором на поверхности клетки (FGFR) возможно только при высвобождении молекулы FGF из комплекса с ГСП; этот процесс обеспечивается гепариназами и протеазами внеклеточного матрикса. После высвобождениямолекула FGF связывается с ГСП на мембране клетки, что облегчает дальнейшее образование лиганд-рецепторного комплекса с FGFR. Обнаружение FGFs (а также их рецепторов) в ядре клетки позволило предположить, что они также могут регулировать процессы жизнедеятельности клеток через механизмы, отличные от классического тирозинкиназного сигнального пути [18].

Фактор роста фибробластов 10

Фактор роста фибробластов 10 (FGF10) – белок, часть семейства факторов роста фибробластов, участвующих в процессах деления клеток, регуляции клеточного роста и созревания, образования кровеносных сосудов, заживления ран. Белки данного семейства играют центральную роль в процессе внутриутробного развития, постнатального роста и регенерации различных тканей, способствуя клеточной пролиферации и дифференцировки. Фактор роста фибробластов 10 является гликопротеином с молекулярной массой 20 кДа и содержит на N-конце серин-богатый участок. Последовательность FGF-10 представлена 170 аминокислотными остатками. Ген FGF10 располагается в 5 хромосоме человека и содержит 4 экзона [].

Фактор роста фибробластов 10 взаимодействует с FGFR1 и FGFR2. При присоединении к белку рецептора, FGF10 запускает каскад химических реакций внутри клетки, необходимых для передачи сигнала в клетку, при которых PIP3 активирует AKT-сигнализацию. PIP3, или фосфатидилинозит-3-киназа является одним из важнейших регуляторных белков, находящихся на пересечении различных сигнальных путей и контролирующих регуляцию таких функций клетки, как рост и выживаемость, старение, опухолевая трансформация [17].

В норме FGF 10 отвечает за развитие костно-суставной системы у позвоночных, участвуя в регуляции дифференцировки и пролиферации остеобластов и хондроцитов [].

 

Соединительная ткань: коллаген

 

Биокомпозитные материалы

Восстановление утраченной костной ткани является одной из важнейших проблем в реконструктивной хирургии различных опорно-двигательных систем организма. Врожденные дефекты костной ткани или ее возрастная утрата, патологические состояния не могут быть устранены путем физиологической регенерации или простого хирургического вмешательства. В таких случаях, как правило, применяют различные материалы, чтобы не только восполнить утраченный дефект, но и обеспечить полноценную функцию органа [12].

Круг материалов, используемых в медицине, весьма широк и включает материалы природного и искусственного происхождения, среди которых – металлы, керамики, синтетические и естественные полимеры, различные композиты и др. Материалы, предназначенные для контакта со средой живого организма и используемые для изготовления медицинских изделий и устройств, получили название «биоматериалы» [3].

Биоматериалы должны обеспечивать относительную простоту проведения хирургического вмешательства, расширение возможностей моделирования, стабильность химической структуры, отсутствие инфекционных возбудителей и т. д [1].

Металлические материалы, как правило, это сочетания металлических элементов (железа, титана, золота, алюминия), используются в силу высокой механической прочности. Выбор металлических материалов или сплавов для медицины проводят, исходя из следующих характеристик: 1) биосовместимость, 2) физические и механические свойства, 3) старе- ние материала. Наибольшее распространение получили нержавеющие стали, титан и его сплавы, сплавы кобальта. Благородные металлы (золото и платина) применяют в ограниченных масштабах для изготовления химически инертных протезов [].

Негативным для медицины свойством многих металлов является коррозия. Металлы склонны к коррозии (за исключением благородных металлов). Коррозия имплантированного металлического изделия под воздействием агрессивных биологических жидкостей может привести к выходу его из строя, а также накоплению в организме токсичных продуктов. [].

Помимо металла, в медицине так же применяются и материалы из керамики. Керамики состоят из неорганических и органических соединений. Керамические материалы, используемые в медицине, называются биокерамикой. Среди биокерамик, нашедших клиническое применение – оксид алюминия, двуокись циркония, окись титана, трикальцийфосфат, гидроксиапатит, алюминаты кальция, биоактивное стекло и стеклокерамика. В зависимости от «поведения» в организме биокерамику подразделяют на биоинертную, биоактивную и растворяющуюся in vivo [].

Главными характеристиками керамики являются биосовместимость, высокая твердость, изолирующие свойства теплоты и электричества, термо- и коррозиостойкость Общим свойством керамических материалов является стойкость к воздействию высоких температур. Среди недостатков, ограничивающих применение керамики в медицинских целях, ее хрупкость и ломкость [].

Исходя из того, что металлические и керамические материалы имеют свои недостатки, в настоящее время широко применяются композиты, представляющие собой сочетание самых ценных свойств тех или иных материалов.

Композиты - это, как правило, полимерная матрица с керамическими или стеклянными волокнами или частицами, усиливающими матрицу. Композитные материалы выполняют опорную функцию: постоянную или временную. Если в области технического материаловедения приветствуется как можно более длительное сохранение первоначальных свойств композита, составляющего элемент конструкции, то для решения задач биологического характера наоборот, композитные материалы обеспечивают каркасные свойства какой-то промежуток времени, пока организм не восстановит исходную поврежденную или утраченную ранее биологическую ткань. При этом превращение материала в собственную ткань должно быть как можно меньше [3].

Композиционные материалы состоят, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и т. д. Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варьируя состав матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам, но в то же время они легче. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик [9].

Биокомпозитные материалы, применяемые для восстановления целостности костной ткани человека или животного называют остеопластическими.

Важнейшие качества остеопластических материалов, влияющие на регенерацию костной ткани это: структура материала, остеогенность, остеокондуктивность, остеоиндуктивность, остеоинтеграция [12].

Физическая структура и характеристики материалов (объем, форма, размер частиц, пористость, пластичность, компрессионная и торсионная устойчивость и т.д.) во многом определяют их остеогенную активность и должны соответствовать конкретному случаю их применения в клинической практике. Благодаря наличию остеокондуктивных качеств материалы обеспечивают образующуюся костную ткань матрицей для адгезии остеогенных клеток и проникновения их вглубь пор и каналов пористых материалов [1].

Остеоиндуктивность, по определению – это способность стимулировать остеогенез при введении в организм. Благодаря этому свойству происходит активация клеток-предшественников, индукция их пролиферации и дифференцировки в остеогенные клетки.

Остеоинтеграция обеспечивает устойчивое закрепление имплантированного материала за счет его непосредственного взаимодействия с поверхностью материнской кости, что порой играет решающую роль в хирургических операциях [12].

В современной имплантологии используются комбинации «имплантат + биосовместимое покрытие», которое позволяет объединить высокие механические свойства материала и биологические качества покрытия, которые придают поверхности имплантата свойства, максимально приближенные к свойствам костной ткани, что улучшает способность имплантата интегрироваться с организмом.

В настоящей работе были использованы следующие материалы: пластинки из титана (Ti), пластинки из титана с кальцийфосфатным покрытием (TiCaP), пластинки из титана с кальцийфосфатным покрытием (TiCaP) + напылением цинка Zn (TiCaP +Zn). Титан представляет собой инертный металл, который не вызывает реакции отторжения тканей и не имеет магнитных свойств. Поэтому имплантаты из титана практически во всех случаях приживаются и позволяют после операции выполнять магниторезонансную томографию. Благодаря пористой структуре кальцийфосфатных покрытий кость врастает в поверхность имплантата и фиксирует его. Формирование на поверхности имплантатов кальцийфосфатного покрытия придает последним биоактивные свойства, что способствует долговечному соединению протеза с костью. Для предотвращения самопроизвольного разрушения титана в результате химического или физико-химического взаимодействия с окружающей средой использовалось напыление цинка [9].

 

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-09; Просмотров: 1949; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь