Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
И ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ АНТЕНН
Связь между радиопередатчиком и радиоприемником осуществляется при помощи свободных электромагнитных волн. От радиопередатчика модулированные токи высокой частоты поступают в антенну, которая преобразует их энергию в энергию свободных электромагнитных волн. В задачу передающей антенны входит сосредоточение излучения свободных радиоволн преимущественно в одном направлении одной плоскости. Антенна радиоприемника выполняет обратные функции. Она преобразует энергию свободных электромагнитных волн в энергию токов высокой частоты и обеспечивает выделение радиоволн, приходящих с заданных направлений. Передающая и приемная антенна обратимы, это позволяет при работе на передачу определять ее свойства в режиме приема, и наоборот. Практически этим свойством антенны широко пользуются, тем более, что некоторые характеристики антенн удобнее и нагляднее определять в режиме передачи, а некоторые — в режиме приема. Конструктивно приемная антенна может быть выполнена проще передающей, так как для нее не возникает вопрос об опасности перенапряжений. Антенна характеризуется рядом общетехнических и экономических показателей. К ним относятся: степень сложности устройства, размеры, механическая прочность и надежность в работе, удобство в эксплуатации, стоимость. Кроме этого, имеются и специальные радиотехнические показатели, характеризующие антенну с точки зрения выполняемых ею специфических функций. Электрические характеристики антенны тесно связаны с ее конструктивными и экономическими показателями. Предъявляемые к антеннам требования, противоречат одно другому и выходом из положения являются компромиссные решения. Так, выполнение требования по уменьшению стоимости, размеров, массы антенны влекут за собой уменьшение либо ее диапазонности, либо коэффициента усиления (эффективности), либо и того и другого одновременно. При всем многообразии систем и конструкций, передающих и приемных антенн, существуют общие характеристики и принципы, на которых основана их работа. Приемная антенна по отношению к питающей линии (фидеру) является генератором высокочастотных колебаний, входное сопротивление которого равно входному сопротивлению этой же антенны, работающей в режиме передачи. Коэффициент полезного действия, сопротивление излучения, направленные свойства и т. д. антенны, работающей в режиме приема, остаются без изменения, если ее использовать в качестве передающей. Передающая антенна по отношению к фидеру эквивалентна нагрузке, потребляющей мощность. Часть этой мощности излучается в пространство, а часть рассеивается в виде тепла в самой антенне. Обычно антенна не поглощает всей мощности, подводимой к ней питающей линией (фидером). Часть энергии при этом отражается обратно в линию. В этом случае между линией и выводами антенны можно включить реактивный четырехполюсник (линию с параметрами, отличными от параметров фидера) и, по крайней мере, на одной частота обеспечить передачу максимальной мощности в антенну. Для этого надо знать две величины, характеризующие антенну как нагрузку на заданной частоте — активное Rа и реактивное Хасопротивления на ее выводах. Знание этих сопротивлений позволяет правильно подобрать элементы выходного колебательного контура и соединительного устройства между ним и антенной и получить надлежащий коэффициент полезного действия (КПД) выходной цепи передатчика. Коэффициент полезного действия собственно антенны η а равен отношению полезной мощности, за которую принимают мощность излучения РΣ , к полной мощности, расходуемой антенной. Последняя больше мощности излучения на величину потерь энергии в антенне. Поэтому η а = РΣ /Ра = РΣ /( РΣ + Рп). (1) Излучаемую антенной мощность выражают через активное сопротивление, которое называют сопротивлением излучения RΣ , и ток, в частности ток на выводах антенны Ia: РΣ =I2a·RΣ (2) Сопротивление излучения не всегда связывают с током на выводах. Нередко сопротивление излучения антенны относят к току в пучности (в максимуме). Сопротивление излучения антенны не зависит от тока. Оно, являясь активным, не вызывает преобразования электрической энергии в тепловую, а только характеризует способность антенны к излучению электромагнитной энергии. Аналогичным образом определяют и мощность потерь: Рп =I2a·Rп(3) где Rп— сопротивление потерь. Коэффициент полезного действия антенны при этом равен: η а = RΣ /( RΣ + Rп). (4) Выполняя свою первую функцию — преобразование энергии токов высокой частоты в энергию свободных электромагнитных волн — передающая антенна характеризуется тремя показателями: к.п.д. антенны, η а, активным Rаи реактивным Хасопротивлениями на выводах. Эти показатели определяют изменением, расчетом или комбинацией этих способов. Вторая функция передающей антенны — надлежащее распределение в пространстве энергии излучаемых электромагнитных волн. О направленных свойствах антенны судят по форме ее диаграмм направленности и некоторым численным показателям, таким как ширина диаграммы направленности, к.н.д., эффективная площадь антенны. Вопросы, связанные с направленностью антенны, необходимо учитывать при ее выборе, установке и ориентации, поэтому рассмотрим их более детально. Под диаграммой направленности антенны понимают графическое изображение распределения уровней мощности (или поля), излучаемых антенной на одинаковом расстоянии от нее в различных направлениях какой-либо плоскости, проходящей через центр или ось антенны. Если антенну, например вибратор, поместить в точку О, окружить сферой радиуса r ивкаждой точке М на поверхности сферы измерить напряженность поля, излучаемого антенной, то в результате можно получить некоторую пространственную фигуру — характеристику направленности антенны. В нашем примере такой фигурой является тороид, показанный на рис. 5. Положение любой точки М на сфере полностью определяется тремя координатами — радиусом сферы r = ОМ, азимутальным углом φ и зенитным углом θ (или углом места Δ = 90°— θ ). В дальнейшем будем пользоваться двумя последними координатами для построения диаграмм направленности антенн.
Свободные электромагнитные волны характеризуются электрическим Е и магнитным Н векторами напряженности поля. Силовые линии электрического поля вибратора лежат в меридиональных плоскостях (плоскостях, проходящих через ось OZ), а магнитного — в экваториальных плоскостях, перпендикулярных оси OZ ( рис. 1). Поэтому меридиональную плоскость называют иначе Е-плоскостью, а экваториальную — Н- плоскостью (или плоскостями Е, Н). Радиоволны — поляризованные волны. Поляризацию радиоволны определяют по ориентировке вектора напряженности электрического поля относительно направления ее распространения. Наличие поляризации налагает определенные требования на ориентировку приемной антенны в пространстве. Она должна совпадать по поляризации с передающей. В противном случае прием радиоволн будет ослаблен. Для определения характеристики направленности антенны в большинстве случаев ограничиваются снятием ее диаграмм направленности в двух взаимно перпендикулярных плоскостях поляризации Е и Н. В зависимости от ориентации антенны относительно поверхности земли плоскость Е может быть горизонтальной или вертикальной. Антенны передатчиков на телецентрах в большинстве случаев ориентированы таким образом, что плоскость Е совпадает с плоскостью горизонта. При снятии диаграммы направленности в горизонтальной плоскости изменяется азимутальный угол φ , при этом зенитный угол θ = 90о остается постоянным. При снятии диаграммы направленности в вертикальной плоскости остается неизменным угол φ = 0°, а переменным становится угол θ. Диаграммы направленности строят в полярной или прямоугольной (декартовой) системах координат (рис.2, 3). На этих рисунках изображена диаграмма направленности симметричного вибратора в плоскости Е. Диаграммы направленности, выполненные в полярных координатах, отличаются большей наглядностью. Прямоугольная же система координат позволяет изменить масштаб по обеим осям, и добиться на графике большей четкости в областях малой интенсивности излучения без применения, например логарифмических единиц отсчета. На практике в основном пользуются нормированными диаграммами направленности, в которых интенсивность излучения отнесена к максимальному значению (рис. 4). Обычно ширина диаграммы направленности антенны определяется как угол между двумя направлениями, в которых уровень мощности излучения равен половине уровня в максимуме, иногда ширину диаграммы направленности определяют как угол между двумя направлениями, соответствующими первым (относительно направления главного излучения) нулевым уровням излучения. При этом обязательно оговаривают уровень излучения. Диаграммы направленности строят в единицах мощности и в единицах поля. Угол раскрыва (ширина диаграммы направленности) не меняется в зависимости от того, в каких единицах построены графики, меняется лишь значение уровня, по которому ведете» отсчет. Для единиц мощности он равен 0, 5Рmах, а для единиц напряженности поля — 0, 707 Еmах. В общем случае диаграмма направленности антенны (рис. 8) имеет ряд максимумов и минимумов. Как правило, один из максимумов по уровню заметно превышает остальные. Часть диаграммы направленности, содержащая этот максимум и заключенная в секторе углов, ограниченных направлениями двух соседних минимумов, называется основным или главным лепестком. Соседние максимумы образуют боковые лепестки. Линию, проходящую через начало координат и точку максимума главного лепестка, называют направлением главного излучения. По лепесткам, лежащим в секторе углов ±(90°—180°) относительно главного направления, судят о побочном (заднем) излучении антенны. На практике пользуются понятием коэффициента защитного действия антенны. Под ним понимают отношение уровня излучения в обратном направлении к уровню излучения в главном. С точки зрения радиопередачи (радиоприема) далеко не безразлично, каким образом в пространстве распределяется излучаемая антенной энергия. Во многих случаях желательно излучать энергию преимущественно в одну сторону, увеличивая тем самым дальность радиосвязи при прочих равных условиях. Энергия, излучаемая в другие стороны, оказывается затраченной не только бесполезно, но подчас и вредно, поскольку она способствует увеличению взаимных помех соседним радиостанциям. Поэтому при отработке направленной антенны стараются уменьшить ее боковое и заднее излучение и сосредоточить энергию в пределах главного лепестка диаграммы направленности. По диаграммам направленности можно получить исчерпывающие оценки направленных свойств антенны, в том числе и значение коэффициента направленного действия (КНД). Повторим, что показателем, характеризующим антенну в целом, как с точки зрения потерь энергии при ее преобразовании, так и с точки зрения распределения энергии в пространстве, является коэффициент усиления антенны. Он численно равен произведению коэффициента полезного действия (КПД) и коэффициента направленного действия (КНД) и поэтому всегда меньше последнего. Нередко антенну сопоставляют не с изотропным излучателем, а сравнивают ее коэффициент усиления с коэффициентом усиления какой-либо другой антенны. При этом обязательно оговаривают, какая антенна принята в данном случае за эталон. Необходимо учесть, что антенна должна выполнять отмеченные выше функции не на одной частоте, а в некоторой области (полосе) частот, и выполнять их так, чтобы весь антенный тракт не вносил заметных искажений в распределение энергии между отдельными частотами спектра. Как и в какой степени, антенна справляется с поставленной задачей, показывает ее частотная характеристика. Частотная характеристика обусловлена зависимостью входных сопротивлений антенны и ее к.н.д. от частоты. Рассмотренные технические показатели и характеристики антенн являются основными, но не единственными. Почти каждый класс антенн применительно к их назначению характеризуется еще рядом своих дополнительных показателей.
ОСНОВНЫЕ ПАРАМЕТРЫ АНТЕНН Диаграммы направленности Антенные устройства вне зависимости от диапазона волн и конкретных особенностей приемно-передающей аппаратуры служат либо для излучения электромагнитной энергии в пространство (передающие антенны), либо для приема этой энергии из пространства (приемные антенны). В радиолокационных станциях одна и та же антенна поочередно выполняет функции передающей (посылка зондирующего импульса) и приемной (прием сигнала, отраженного от цели). Большинство антенн, применяемых на сверхвысоких частотах, — направленные т. е. обеспечивают прием или излучение только в пределах определенных секторов. Способность антенн концентрировать излучаемую электромагнитную энергию характеризуют специальные графики, называемые диаграммами направленности. Обычно диаграммы направленности строят для двух плоскостей: горизонтальной и вертикальной. Диаграмма направленности антенны представляет собой график зависимости напряжения сигнала на входе приемника от угла поворота данной антенны в соответствующей плоскости при работе этой антенны либо на передачу, либо на прием. Следует иметь в виду, что диаграмма направленности антенны не зависит от того, применяется ли антенна в качестве передающей или приемной, т. е. любая антенна является обратимой. На рис. 5 для примера приведена диаграмма направленности, построенная в полярных координатах. У этой диаграммы направление максимального сигнала совмещено с направлением начала отсчета углов поворота антенны (θ = 0), а сам максимальный сигнал принят за единицу, т. е. в направлении радиусов векторов здесь отложена не сама величина интенсивности сигнала Е, а пропорциональная ей величина Е/Етлх. Рис.5. Диаграмма направленности антенны в полярной системе координат Из рис.5 видно, что диаграмма направленности имеет характерную лепестковообразную форму. Лепесток, соответствующий максимальному сигналу (в данном случае θ = 0), называют главным лепестком диаграммы направленности, а все последующие — боковыми лепестками. Часто боковые лепестки нумеруют по порядку в направлении от главного лепестка. Так, например, лепестки диаграммы на рис. 5, лежащие под углами θ 1 = 60 и 300°, называют первыми боковыми лепестками; следующие за ними — вторыми боковыми лепестками (θ 2 = 120 и 240°) и т. д. Как правило, величина боковых лепестков уменьшается по мере роста их номера. Направления, в которых антенна не принимает и не излучает, называются нулями диаграммы направленности. Побочные максимумы и нули диаграммы направленности всегда чередуются. Антенны, применяемые на сверхвысоких частотах, часто обладают столь узкими диаграммами направленности, что их графическое изображение в полярной системе координат становится затруднительным. В этих случаях диаграммы строят в прямоугольной системе координат, откладывая по вертикали величину Е/Етлх, а по горизонтали — угол поворота антенны. Примером такой диаграммы может служить кривая 1на рис. 6, построенная для той же антенны, что и на рис. 5. В описаниях различного типа аппаратуры часто вместо диаграмм направленности приводят их числовую характеристику, указывая углы раствора главного лепестка в вертикальной и горизонтальной плоскостях, местоположение боковых лепестков и их интенсивность Под углом раствора диаграммы направленности в данной плоскости принято понимать угол главного лепестка, лежащий между направлениями, в которых напряжение сигнала падает до значения Есигн = = 0, 707 от максимальной величины Етах. В соответствии со сказанным угол раствора главного лепестка у диаграмм, показанных на рис. 1 и 2, составляет θ о = 50°. В некоторых случаях диаграммы направленности строят не в относительных величинах напряжения E/Emах, а в относительных величинах мощности. Так как мощность пропорциональна квадрату напряжения, то диаграмма направленности по мощности может быть получена при возведении в квадрат соответствующих величин Е/Етах. Такимпутем, в частности, была построена кривая 2 на рис. 2, представляющая диаграмму по мощности той же самой антенны, что и кривая 1. Измерять угол раствора главного лепестка у такой диаграммы необходимо на уровне (Е/Етах)2 = ( V)2 = 0, 5. Поэтому очень часто говорят, что угол раствора главного лепестка диаграммы направленности определяется по точкам половинного значения мощности. В дальнейшем мы будем обозначать угол раствора диаграммы направленности в вертикальной плоскости через θ 0, а в горизонтальной плоскости через Ф0. Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 774; Нарушение авторского права страницы